Section 2.6: Generalized Power Rule

THE GENERALIZED POWER RULE

For any constant exponent n,

$$\frac{d}{dx} \left[\left(f(x) \right)^n \right] = n \left(f(x) \right)^{n-1} \cdot f'(x).$$

Example 1. Find the derivative of $y = (7x^2 - 5x + 2)^3$.

Example 2. Find the derivative of $y = 18\sqrt{5x^3 - 2x^2 + 3x - 9}$.

Example 3. Find the derivative of $y = \frac{4}{\sqrt[5]{4x^3 - 3x^2 + 5x + 7}}$.

Example 4. Find the derivative of $y = \left(\frac{1}{x^4 - 3x^3 + 2x - 8}\right)^8$.

Example 5. Find the derivative of $y = [(x^2 - 3)^4 + 7x^9]^6$.

Supplemental Exercises

Find the derivative f'. Do not simplify.

1.
$$f(x) = 3(4x^2 - 7)^2$$

2.
$$f(x) = 8(3x - 5)^{3/4}$$

3.
$$f(x) = 7(x^2 + 5x + 1)^4$$

4.
$$f(x) = 6\sqrt{x^2 + 9x + 9}$$

5.
$$f(x) = 8\sqrt[3]{2x+3}$$

ANSWERS

1.
$$f'(x) = 6(4x^2 - 7)[8x]$$

2.
$$f'(x) = 6(3x - 5)^{-1/4}[3]$$

3.
$$f'(x) = 28(x^2 + 5x + 1)^3[2x + 5]$$

4.
$$f'(x) = 3(x^2 + 9x + 9)^{-1/2}[2x + 9]$$

5.
$$f'(x) = \frac{8}{3}(2x+3)^{-2/3}[2]$$