- 1. Find the equation of the tangent line to the curve $y = \frac{-1}{\sqrt{x+1}}$ at x = 4.
- 2. (1 pt each) True or False:
 - (a) When f is decreasing, the graph of f' lies below the x-axis.
 - (b) If f is continuous, then f is differentiable.
 - (c) If f and g are differentiable, then $\frac{d}{dx} \left[f(g(x)) \right] = f(x)g'(x) + g(x)f'(x).$
 - (d) The derivative f'(a) is the average rate of change of y = f(x) with respect to xwhen x = a.
 - (e) $\frac{d}{dx}(\sin^2 x + \cos^2 x) = 0.$

3. Given
$$g(x) = \sin 2x + \cos x$$
 find $g''\left(\frac{3\pi}{4}\right)$

- 4. Find the derivative. (Do not simplify)
 - (a) $y = \sqrt[3]{x^2} + \frac{3x^4}{2} + 9x^2 \frac{7}{x^5} + \frac{1}{\sqrt{x}}$ (b) $y = \cos^3 4x + (3x^2 + 1)^{7/4}$

(c)
$$y = (3x^2 - 7x + 2)^4 (5x + 7)^6$$

(d) $y = \sin(3x+5)\cos(7x^2 - x + 3)$

(e)
$$y = \sqrt[5]{\frac{2x^2 - 7x + 8}{x^3 - 2x + 6}}$$

(f) $y = \csc x^3 + 3x \tan^2 x$

(g)
$$y = \sec(\cot(x^4 + 6x))$$

(h)
$$y = \frac{7}{(x^5+3)^4+6}$$

- 5. Find y' by implicit differentiation if $y^6 + 3x^2 = \cos y + x^2y^3$.
- 6. Find all values of x (in radians) for which $y = \cos^2 x \sqrt{3} \sin x$ has a horizontal tangent.
- 7. A painter is painting a house using a ladder 12 feet long. A dog runs by the ladder dragging

a leash that catches the bottom of the ladder and drags it directly away from the house at 24 ft/sec. Assuming that the ladder continues to be pulled away at this speed, how fast is the top of the ladder moving down the wall when the top is 5 feet from the ground?

- 8. A particle moves according to the distance function $s(t) = t^3 9t^2 + 15t + 10$
 - (a) Find the velocity at time t.
 - (b) Find the acceleration at time t.
 - (c) When is the particle at rest?
 - (d) When is the particle moving in a positive direction?
 - (e) Find the total distance traveled in the first 10 seconds. (SET UP ONLY)
- 9. The graphs of f and g are shown below. (NOTE: f is the top graph and g is the bottom graph.)

- (a) Find f'(-1)
- (b) Find g'(-1)
- (c) Let F(x) = f(x)g(x). Compute F'(-1)
- (d) Let G(x) = f(g(x)). Compute G'(-1)

1. $y = \frac{1}{18}x + \frac{1}{9}$
2. (a) T (b) F (c) F (d) F (e) T $\sqrt{2}$
3. $4 + \frac{\sqrt{2}}{2}$
4. (a) $y' = \frac{2}{3}x^{-1/3} + 6x^3 + 18x + 35x^{-6} - \frac{1}{2}x^{-3/2}$
(b) $y' = 3(\cos^2 4x)(-4\sin 4x) + \frac{7}{4}(3x^2+1)^{3/4}(6x)$
(c) $y' = 30(3x^2 - 7x + 2)^4(5x + 7)^5 + 4(5x + 7)^6(3x^2 - 7x + 2)^3(6x - 7)$
(d) $y' = [\sin(3x+5)][-\sin(7x^2-x+3)](14x-1) + 3[\cos(7x^2-x+3)][\cos(3x+5)]$
(e) $y' = \frac{1}{5} \left(\frac{2x^2 - 7x + 8}{x^3 - 2x + 6} \right)^{-4/5} \left(\frac{(x^3 - 2x + 6)(4x - 7) - (2x^2 - 7x + 8)(3x^3 - 2)}{(x^3 - 2x + 6)^2} \right)$
(f) $y' = (-\csc x^3 \cot x^3)(3x^2) + 6x \tan x \sec^2 x + 3 \tan^2 x$
(g) $y' \operatorname{sec}(\cot(x^4 + 6x)) \tan(\cot(x^4 + 6x)) (-\csc^2(x^4 + 6x)) (4x^3 + 6)$
(h) $y' = -28 \left[(x^5 + 3)^4 + 6 \right]^{-2} (x^5 + 3)^3 (5x^4)$
5. $y' = \frac{2xy^3 - 6x}{6y^5 + \sin y - 3x^2y^2}$
6. $x = \frac{\pi}{2} + k\pi; x = \frac{4\pi}{3} + 2k\pi; x = \frac{5\pi}{3} + 2k\pi$
7. $\frac{dy}{dt} = \frac{-24\sqrt{119}}{5}$ ft/sec
8. (a) $v(t) = s'(t) = 3t^2 - 18t + 15$ (b) $a(t) = 6t - 18$
(c) $t = 1; t = 5$ (d) $0 \le t < 1; t > 5$ (e) $ s(1) - s(0) + s(5) - s(1) + s(10) - s(5) $
9. (a) 2
(b) 1 (c) C
(c) -6 (d) -3