MATH 12002 Limit Laws Section 1.4

Suppose that ¢ is a constant and the limits lim f(x) and lim g(x) exist. Then
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o lim [f(x) £ g(x)] = lim f(x) £ lim g(z)
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e lim [cf(x)] = clim f(x)
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o lim [f(2)g(x)] = [lim /()] - [lim ()]
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e lim [f(2)]" = [lim f(x)} where n is a positive integer.
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o lim {/f(x) = ¢ ilil(ll f(z) where n is a positive integer. If n is even, we assume that
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lim f(x) > 0.

e Direct Substitution Property: If f is a polynomial or a rational function and a is in
the domain of f, then

lim f(z) = f(a).
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o If f(x) = g(x) when z # a, then lim f(z) = lim g(x), provided the limits exist.
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o lim f(x) = L if and only if lim f(x) =L = lim f(z).
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Examples: Evaluate the limit, if it exists.
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Squeeze Theorem: If f(z) < g(x) < h(x) when z is near a (except possibly at a) and

lim f(z) = lim h(z) = L
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then lim g(z) =L
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Example: Show that ling) #2sin & = 0.
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Homework: pp 43-44; #1, 2, 3, 11-23 odd, 29, 31, 37a



