MATH 12003 INTEGRAL TEST SECTION 12.3

The Integral Test: Suppose f is a continuous, positive, decreasing function on [1, 00) and let
a, = f(n). Then the series Z a, is convergent if and only if the improper integral / f(z)dx
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is convergent. That is,

o If / f(z) dx is convergent, then Z a, is convergent.
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o If / f(z) dzx is divergent, then Z a, is divergent.
1 n=1

Important notes about the integral test

e [t is not necessary for the integral or the sum to start at 1.

e [t is not necessary that the function f be always decreasing, just that it is decreasing for
all x larger than some number N.

e The sum of the series does not equal the value of the integral.
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p-series: The p-series E — is convergent if p > 1 and is divergent if p < 1.
n
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EXAMPLES:
oo
1. Z — converges since it is a p-series with p = 5.
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2. Z —— diverges since it is a p-series with p = 1/2.
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EXAMPLES: Determine whether the series is convergent or divergent.
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