What is an interest rate

- You borrow $\$ 100$; you pay back $\$ 106$ a year later. You have paid interest at 6%.
- You lend $\$ 100$; you get $\$ 106$ a year later. You have received interest at 6\%

The Basic Assumption

- There is a market interest rate r at which I can borrow and lend as much as I want. from now, and that I can borrow and lend at 6%. The present value is $\$ 100$, the amount that, if I had today, would be worth $\$ 106$ a year from now.

$$
P V=\frac{\$ 106}{1+r}=\frac{\$ 106}{1+0.06}=\$ 100
$$

Different Interest Rates

- Borrowing and lending

Different Interest Rates

- Borrowing and lending
- Banks pay you less than they charge their customers. (Wholesale vs retail)

Different Interest Rates

- Borrowing and lending
- "Riskiness"
- You pay more for a used car loan than GM does to borrow (Risk adjustment)
- Stock market

KENTSTATE

Different Interest Rates

- Borrowing and lending
- "Riskiness"
- Taxes
- Long term vs Short Term

KENTSTATE

Two Extensions

- I have $\$ x$ coming in two years from now.

Two Extensions

- I have $\$ x$ coming in two years from now.
- The present value is

$$
P V=\frac{X}{(1+r)^{2}}
$$

KENTSTATE

Two Extensions

- I have $\$ \mathrm{x}$ coming in n years from now.
- The present value is

$$
P V=\frac{X}{(1+r)^{n}}
$$

KENTSTATE

Two Extensions

- I have $\$ x$ coming in each year for the next n years.
- The present value is

$$
P V=\frac{x}{(1+r)}+\frac{x}{(1+r)^{2}}+\ldots+\frac{x}{(1+r)^{n}}
$$

Two Extensions

- I have $\$ x$ coming in each year for the next n years.

The Series

$P V=\frac{x}{(1+r)}+\frac{x}{(1+r)^{2}}+\ldots+\frac{x}{(1+r)^{n}}$ $P V=\frac{x}{r}\left(1-\frac{1}{(1+r)^{n}}\right)$

KENTSTATE

	A Consol
	$P V=\frac{x}{r}$
KENTSTATE	menestratas

