

The General Efficiency Loss

- Now suppose we impose a tax on the product, so the quantity sold drops.
- The efficiency loss is, of course, the shaded area.

- The EL is
$1 / 2$ BH

The General Efficiency Loss

The General Efficiency Loss

- The EL is
$1 / 2 B H$
$B=\boldsymbol{\tau} \boldsymbol{P}_{o}$
$H=\mu B=\mu \tau P_{o}$
$E L=(1 / 2) \mu \tau^{2} P_{o}{ }^{2}$

KENTSTATE
Taxes and Efficiency Losses- A

The General Efficiency Loss

- The EL is
$1 / 2 B H$
$B=\tau P_{o}$ $H=\mu B=\mu \tau P_{o}$ $E L=(1 / 2) \mu \tau^{2} P_{o}{ }^{2}$

KENTSTATE
Taxes and Efficiency Losses- A

The General Efficiency Loss

- The EL is
$1 / 2 B H$
$B=\tau P_{o}$
$\boldsymbol{H}=\boldsymbol{\mu} \boldsymbol{B}=\boldsymbol{\mu} \boldsymbol{\tau} \boldsymbol{P}_{o}$

KENTSTATE
Taxes and Efficiency Losses- A
KENTSTATE

$$
\begin{aligned}
& \text { Efficiency Losses- A } \\
& \text { Proof }
\end{aligned}
$$

The General Efficiency Loss

- The EL is
$1 / 2 B H$
$B=\tau P_{o}$

$H=\mu B=\mu \tau P_{o}$
$\boldsymbol{E L}=(1 / 2) \mu \tau^{2} \boldsymbol{P}_{o}{ }^{2}$

KENTSTATE
Taxes and Efficiency Losses- A
Proof

The General Efficiency Loss

- The EL is
$\begin{gathered}1 / 2 B H\end{gathered}$
$R_{\tau}=\tau R_{l}$
$H_{\mu B}=\mu \tau P_{o}$
$E L=(1 / 2) \mu \tau^{2} P_{o}{ }^{2}$

The Second Proposition

$$
\begin{gathered}
E L_{A}=\frac{1}{2} \mu \tau_{A}^{2} P_{o A}^{2} \\
R_{\tau}^{A}=\tau_{A} R_{1}^{A}
\end{gathered}
$$

The Second Proposition

$$
\begin{gathered}
E L_{A}=\frac{1}{2} \mu \tau_{A}^{2} P_{o A}^{2} \\
R_{\tau}^{A}=\tau_{A} R_{1}^{A} \\
\min E L_{A}+E L_{B}
\end{gathered}
$$

$$
\text { s.t } R_{\tau}^{A}+R_{\tau}^{B}=R^{*}
$$

KENTSTATE

The Algebra

$\min \frac{1}{2} \mu \tau_{A}^{2} P_{o A}^{2}+\frac{1}{2} \mu \tau_{B}^{2} P_{o B}^{2}-\lambda\left(\tau_{A} R_{1}^{A}+\tau_{B} R_{1}^{B}-R^{*}\right)$

Optimization

$\min H=\frac{1}{2} \mu \tau_{A}^{2} P_{o A}^{2}+\frac{1}{2} \mu \tau_{B}^{2} P_{o B}^{2}-\lambda\left(\tau_{A} R_{1}^{A}+\tau_{B} R_{1}^{B}-R^{*}\right)$

$$
\begin{aligned}
& \frac{\partial H}{\partial \tau_{A}}=\mu \tau_{A} P_{o A}^{2}-\lambda R_{1}^{A}=0 \\
& \frac{\partial H}{\partial \tau_{B}}=\mu \tau_{B} P_{o B}^{2}-\lambda R_{1}^{B}=0
\end{aligned}
$$

$$
\begin{gathered}
\frac{\partial H}{\partial \tau_{A}}=\mu \tau_{A} P_{o A}^{2}-\lambda R_{1}^{A}=0 \\
\frac{\partial H}{\partial \tau_{B}}=\mu \tau_{B} P_{o B}^{2}-\lambda R_{1}^{B}=0 \\
\mu \tau_{A} P_{o A}^{2}=\lambda R_{1}^{A} \\
\mu \tau_{B} P_{o B}^{2}=\lambda R_{1}^{B}
\end{gathered}
$$

Optimization

$$
\begin{gathered}
\mu \tau_{A} P_{o A}^{2}=\lambda R_{1}^{A} \\
\mu \tau_{A} P_{o B}^{2}=\lambda R_{1}^{B} \\
\frac{\tau_{A}}{\tau_{B}}=\frac{R_{1}^{A} P_{o B}^{2}}{R_{1}^{B} P_{o A}^{2}}
\end{gathered}
$$

Optimization

$E L_{A, 1}=\frac{1}{2} \mu P_{o A}^{2}$
$\frac{\tau_{A}}{\tau_{B}}=\frac{R_{1}^{A} E L_{B, 1}}{R_{1}^{B} E L_{A, 1}}=\left[\frac{R_{1}^{A}}{E L_{A, 1}}\right]\left[\frac{R_{1}^{B}}{E L_{B, 1}}\right]$
KENTSTATE
Taxes and Efficiency Losses- A
Taxes and Efficien

End

