

## GDP and Hours Worked, G7

| Country | Hours <br> Per <br> Week <br> Per Person <br> 15-64 | GDP Per Hour (US=100) | $\begin{aligned} & \text { GDP Per } \\ & \text { Person } \\ & 15-64 \\ & \text { (US }=100) \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| Germany | 19.3 | 99 | 74 |
| France | 17.5 | 110 | 74 |
| Italy | 16.5 | 90 | 57 |
| Canada | 22.9 | 89 | 79 |
| United Kingdom | 22.8 | 76 | 67 |
| Japan | 27.0 | 74 | 78 |
| United States | 25.9 | 100 | 100 |

KENTSTATE
Why Americans Work Harder

| 1970-74 Data |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Country | Hours Per Weer Per Persor 15-64 | $\begin{gathered} \text { GDP Per } \\ \text { Hour } \\ \text { (US=100) } \end{gathered}$ | $\begin{gathered} \hline \text { GDP Per } \\ \text { Person } \\ 15-64 \\ \text { US }=100) \\ \hline \end{gathered}$ |  |
| Germany | 24.6 | 72 | 75 | 17.5 |
| France | 24.4 | 74 | 77 |  |
| traly | 19.2 | 65 | 53 |  |
| Canada | 22.2 | 91 | 86 |  |
| United Kingdom | 25.9 | 62 | 68 |  |
| Japan | 29.8 | 49 | 62 | 25.9 |
| United States | 23.5 | 100 | 100 |  |
| KENTSTATE | Why Americans | ark harcia |  |  |



## The Immortal Consumer

$U=\log c_{1}+\log c_{2}+\log c_{3}+\log c_{4}$
$U=\gamma \log c_{1}+\gamma^{2} \log c_{2}+\gamma^{3} \log c_{3}+$ $\gamma^{4} \log c_{4}+\gamma^{5} \log c_{5}+\ldots$

KENTSTATE

## Utility in the Prescott Model

$$
U=\log c_{1}+\log c_{2}+\log c_{3}+\log c_{4}
$$

## Allowing for Leisure

$$
\log c_{i}+\theta \log \left(100-h_{i}\right)
$$

## The Final Equation

$$
\begin{gathered}
U=\gamma\left[\log c_{1}+\theta \log \left(100-h_{1}\right)\right]+ \\
\gamma^{2}\left[\log c_{2}+\theta \log \left(100-h_{2}\right)\right]+\ldots \\
U=\sum_{i=1}^{\infty} \gamma^{i}\left[\log c_{i}+\theta \log \left(100-h_{i}\right)\right]
\end{gathered}
$$

## Optimization

$$
\begin{gathered}
U=\sum_{i=1}^{\infty} \gamma^{i}\left[\log c_{i}+\theta \log \left(100-h_{i}\right)\right] \\
\left(1+\tau_{s}\right) c_{t}+\left(1+\tau_{x}\right) x_{t}= \\
\left(1-\tau_{w}\right) w_{t} h_{t}+ \\
\left(1-\tau_{k}\right)\left(r_{t}-\delta\right) k_{t}+\delta k_{t}+T_{t}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Optimization } \\
& U=\sum^{\infty} \gamma^{i}\left[\log c_{i}+\theta \log \left(100-h_{i}\right)\right] \\
& \left(1+\tau_{s}\right) c_{t}-\left(1+\tau_{x}\right) x_{t}= \\
& \left(1-\tau_{w}\right) w_{t} h_{t}+ \\
& \left(1-\tau_{k}\right)\left(r_{t}-\delta\right) k_{t}+\delta k_{t}+T_{t}
\end{aligned}
$$

Optimization
$U=\sum_{i=1}^{\infty} \gamma^{i}\left[\log c_{i}+\theta \log \left(100-h_{i}\right)\right]$

$$
\begin{aligned}
& \left(1+\tau_{s}\right) c_{t}+\left(1+\tau_{x}\right) x_{t}= \\
& \underbrace{\left(1-\tau_{t} h_{t}+\right.}_{\left(1-\tau_{k}\right)\left(r_{t}-\delta\right) k_{t}+\delta k_{t}+w_{t}}
\end{aligned}
$$

$$
\begin{aligned}
U= & \sum_{i=1}^{\infty} \gamma^{i}\left[\log c_{i}+\theta \log \left(100-h_{i}\right)\right] \\
& \left(1+\tau_{s}\right) c_{t}+\left(1+\tau_{x}\right) x_{t} \Rightarrow \\
& \left(1-\tau_{w}\right) w_{t} h_{t}+ \\
& \left(1-\tau_{k}\right)\left(r_{t}-\delta\right) k_{t}+\delta k_{t}+T_{t}
\end{aligned}
$$

$$
\begin{gathered}
\text { Optimization } \\
U=\sum_{i=1}^{\infty} \gamma^{i}\left[\log c_{i}+\theta \log \left(100-h_{i}\right)\right] \\
\left(1+\tau_{s}\right) c_{t}+\left(1+\tau_{x}\right) x_{t}= \\
\left(1-\tau_{w}\right) w_{t} h_{t}+ \\
\left(1-\tau_{k}\right)\left(r_{t}-\delta\right) k_{t}+\delta k_{t}+T_{t}
\end{gathered}
$$

KENTSTATE

The Production Function

$$
\left(1-\tau_{k}\right)\left(r_{t}-\delta\right) k_{t}+\delta k_{t}+T_{t}
$$

$$
\begin{gathered}
Y_{i t}=A_{i t} K_{i t}^{\alpha} L_{i t}^{1-\alpha} \\
K_{i t}=K_{i, t-1}(1-\delta)+X_{i t}
\end{gathered}
$$

The Tax on Consumption and Wages

$$
\tau_{w}^{*}=\frac{\tau_{s}+\tau_{w}}{1+\tau_{s}}
$$

The higher the value of leisure (i.e., the Worked
higher the value of $\theta$ )
the fewer hours

$$
h_{i t}=\frac{1-\alpha}{1-\alpha+\frac{c}{y} \frac{\theta}{\left(1-\tau_{w}^{*}\right)}}
$$

The higher the value The higher the of leisure (i.e., the Work tax rate (i.e., the higher the value of $\theta$ ) the fewer hours worked $\quad 1-\alpha$

$$
h_{i t}=\frac{1-\alpha}{1-\alpha+\frac{c}{y} \frac{\theta}{\left(1-\tau_{w}^{*}\right)}}
$$

KENTSTTATE higher the value of $\tau$ ) the fewer hours worked

$$
h_{i t}=\frac{1-\alpha}{1-\alpha+\frac{c}{y} \frac{\theta}{\left(1-\tau_{w}^{*}\right)}}
$$

KENTSTATE
KENTSTATE

## Fitting the Model

|  |  | c Moreover, the change is consistent with changes in tax rates. |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
| Some | 040 | 081 | 259 | ${ }^{246}$ |
| KENTSTATE | Whry Ameracess |  |  |  |

## Are Europeans Better Off?


kENTSTATE

Are Europeans Better Off?


KENTSTATE
Why Americans Work Harde

