Calculating with our
Money Demand Function
Part 1

$$
r_{N}=r_{R}+\eta^{e}+r_{R} \eta^{e}
$$

$m_{i, t}=\xi \frac{1+r_{N}}{r_{N}} c_{i, t}$ -

The Consumption Fraction

$c_{i, t}=\frac{1}{(n-i+1)+\xi(n-i)} z_{i}$

The Basic Model

The Basic Model	
	$\xi \frac{1+r_{N}}{r_{N}}$
KENTSTATE	

$c_{1}=\frac{1}{4+3 \xi} z_{1} \quad m_{1}=\xi \frac{1+r_{N}}{r_{N}} c_{1}$

$$
c_{2}=\frac{1}{3+2 \xi} z_{2} \quad m_{2}=\xi \frac{1+r_{N}}{r_{N}} c_{2}
$$

$$
\begin{aligned}
& m_{1}=\xi \frac{1+r_{N}}{r_{N}} c_{1} \\
& c_{1}=\frac{1}{4+3 \xi} z_{1}
\end{aligned}
$$

Period 3

$c_{1}=\frac{1}{4+3 \xi} z_{1} \quad m_{1}=\xi \frac{1+r_{N}}{r_{N}} c_{1}$
$c_{2}=\frac{1}{3+2 \xi} z_{2} \quad m_{2}=\xi \frac{1+r_{N}}{r_{N}} c_{2}$
$c_{3}=\frac{1}{2+\xi} z_{3} \quad m_{3}=\xi \frac{1+r_{N}}{r_{N}} c_{3}$

- $y_{2}=\$ 300,000, y_{3}=\$ 630,000$, $\mathrm{y}_{1}=\mathrm{y}_{4}=0$
- $r_{R}=50 \%, \eta^{e}=50 \%$
- $\xi=1 / 3$

An Illustration

$\cdot y_{2}=\$ 300,000, y_{3}=\$ 630,000$, $\mathrm{y}_{1}=\mathrm{y}_{4}=0$

- $r_{R}=50 \%, \eta^{\mathrm{e}}=\mathbf{5 0 \%}$
- $\xi=1 / 3$

Real and Nominal Rates
$\cdot y_{2}=\$ 300,000, y_{3}=\$ 630,000$, $\mathrm{y}_{1}=\mathrm{y}_{4}=0$

- $r_{R}=50 \%, \eta^{e}=50 \%$
- $\xi=1 / 3$

$$
r_{N}=r_{R}+\eta^{e}+r_{R} \eta^{e}
$$

KENTSTATE

Fisher's Law $\begin{aligned} & \cdot \mathbf{y}_{2}=\$ 300,000, \mathrm{y}_{3}=\$ 630,000, \\ & \mathbf{y}_{1}=\mathrm{y}_{4}=0 \\ & \cdot \mathbf{r}_{\mathrm{R}}=50 \%, \eta^{\mathrm{e}=50 \%} \\ & \cdot \xi=1 / 3 \\ & \quad r_{N}=r_{R}+\eta^{\mathrm{e}}+r_{R} \eta^{\mathrm{e}} \end{aligned}$ (Irving) Fisher's Law

Fisher's Law

$$
r_{N}=r_{R}+\eta^{e}+r_{R} \eta^{e}
$$

$$
r_{N}=(0.50)+(0.50)+(0.50)(0.50)
$$

$$
=1.25
$$

KENTSTATE

End

