

Nominal terms

- We can also do the calculation in terms of nominal values.
- A useful exercise.
- At the end, a threat

$$
\mathrm{KENT} \mathrm{STATE}_{1} \quad \begin{aligned}
& \text { Calculating with Our Money } \\
& \text { Demand Function-Part } 3
\end{aligned}
$$

Done in Nominal Terms

Period 2 Wealth

No Free Lunch

- In nominal terms - In real terms

$$
\begin{aligned}
& \mathrm{c}_{2}=\$ 216,000 \\
& \mathrm{~m}_{2}=129,600
\end{aligned}
$$

No Free Lunch

- In nominal terms
- In real terms

$$
\begin{array}{ll}
\mathrm{c}_{2}=\$ 216,000 & c_{2}=\frac{\$ 216}{P_{2}}=\frac{\$ 216}{\$ 1.5}=\$ 144 \\
\mathrm{~m}_{2}=129,600 & m_{2}=\frac{\$ 129.6}{P_{2}}=\frac{\$ 129.6}{\$ 1.5}=\$ 86.4
\end{array}
$$

KENTSTATE

A Problem

- Assuming no change in prices, Acme Widgets is certain to earn $\$ 100,000$ next period.
- Newspapers report the interest rate is 8%.
- What is the DPV of next year's earnings?

Wrong Wrong Wrong

- Assuming no change in prices, Acme Widgets is certain to earn $\$ 100,000$ next period.
- Newspapers report the interest rate is 8%.
- What is the DPV of next year's earnings?

Another Problem

- Based on the consensus inflation forecast of 3%, Baker electronics expects to earn $\$ 100,000$ next year.
- Experts have determined that Baker's real rate of interest, adjusted for tax and risk considerations, is 5%.
- What is the DPV of Baker's profits?

KENTSTATE

Calculating with Our Money
Demand Function-Part 3

Doing it Right

- This calculation mixes real and nominal.
- Suppose the expected inflation rate is 3%

$$
D P V=\frac{\$ 100,000(1.03)}{1.08}=\$ 95,370
$$

$$
D P V=\frac{\$ 100,000}{1.05}=\$ 95,238
$$

KENTSTATE $\begin{gathered}\text { Calculating with Our Money } \\ \text { Demand Function-Part } 3\end{gathered}$

	Baker
	$D P V=\frac{\$ 100,000}{1.05}=\$ 95,238$
KENTSTATE	

Doing It Right

$D P V=$	$\frac{\$ 100,000}{1.08}=\$ 92,593$
$D P V=$	$\frac{\frac{\$ 100,000}{1.03}}{1.05}=\$ 92,464$

KENTSTATE Calculating with Our Money

The Point

- Discount real (inflation adjusted) numbers with real discount rates.
- Discount nominal numbers with nominal interest rates.

The Threat

KENTSTATE

End

© 2004 Charles W. Upton. All rights reserved

