

The Nominal Rate

- Interest stated in money.
- I lend you 100 pictures of George; you promise to give me 106 back.

$$
r_{N}=6 \%
$$

```
KENTSTATE

\section*{The Real Rate}
- Interest stated in purchasing power.
- I lend you enough to purchase 100 slices of pizza; you promise to repay me enough to

\section*{The Relation}
- I have promised you a real return of \(r_{R}\)
- The inflation rate is \(\eta\)
- What kind of nominal return \(\left(r_{N}\right)\) have I promised?
\[
r_{R}=3 \%
\]

\section*{The Relation}
\(\left[\$ 100\left(1+r_{R}\right)\right]\)

Amount due with no inflation

\section*{The Relation}
\[
\left[\$ 100\left(1+r_{R}\right)\right](1+\eta)
\]

Inflation adjustment

The Relation
\[
\left[\$ 100\left(1+r_{R}\right)\right](1+\eta)=
\]
\[
\$ 100\left(1+r_{N}\right)
\]

Amount due in nominal

The Relation
\[
\left(1+r_{R}\right)(1+\eta)=\left(1+r_{N}\right)
\]
\[
r_{N} \cong r_{R}+\eta
\]

The Fisher Equation
\[
\left(1+r_{N}\right)=\left(1+r_{R}\right)(1+\eta)
\]
\[
r_{N}=r_{R}+\eta+r_{R} \eta
\]
\[
\begin{aligned}
& \text { More on the Basics of th } \\
& \text { Demand for MMoney }
\end{aligned}
\]
\[
\begin{gathered}
r_{N}=r_{R}+\eta+r_{R} \eta \\
r_{N} \cong r_{R}+\eta
\end{gathered}
\]

How good is the approximation
\[
\begin{aligned}
& r_{R}=3 \% \\
& \eta=2 \%
\end{aligned}
\]

How good is the approximation
\(r_{R}=3 \%\)
\(\eta=2 \%\)
\(r_{N}=r_{R}+\eta+r_{R} \eta\)

How good is the approximation
\(r_{R}=3 \%\)
\(\eta=2 \%\)
\(r_{N}=r_{R}+\eta+r_{R} \eta\)
\(=0.0506\)
\(r_{N} \cong r_{R}+\eta=0.05\)

How good is the approximation
\[
\begin{array}{cc}
r_{R}=3 \% & r_{R}=50 \% \\
\eta=2 \% & \eta=50 \% \\
r_{N}=r_{R}+\eta+r_{R} \eta & r_{N}=r_{R}+\eta+r_{R} \eta \\
=0.0506 & =0.50+0.50 \\
r_{N} \cong r_{R}+\eta=0.05 & +(0.50)(0.50) \\
& =1.25
\end{array}
\]

How good is the approximation
\[
\begin{array}{cc}
r_{R}=3 \% & r_{R}=50 \% \\
\eta=2 \% & \eta=50 \% \\
r_{N}=r_{R}+\eta+r_{R} \eta & r_{N}=r_{R}+\eta+r_{R} \eta \\
=0.0506 & =1.25 \\
r_{N} \cong r_{R}+\eta=0.05 & r_{N} \cong r_{R}+\eta=1.00
\end{array}
\]

How good is the approximation
\[
\begin{gathered}
r_{R}=3 \% \\
\eta=2 \% \\
r_{N}=r_{R}+\eta+r_{R} \eta \\
=0.0506 \\
r_{N} \cong r_{R}+\eta=0.05
\end{gathered}
\]
\[
r_{N} \cong r_{R}+\eta=1.00
\]

How good is the approximation
\begin{tabular}{|c|c|}
\hline \(r_{R}=3 \%\) & \(r_{\text {R }}=50 \%\) \\
\hline - - \({ }^{\text {are }}\) & \(\eta=50 \%\) \\
\hline \(100 \%\) versus \(125 \%\). & \(r_{N}=r_{R}+\eta+r_{R} \eta\) \\
\hline Pretty bad & \(=1.25\) \\
\hline \(r_{N} \simeq r_{R}+\quad \eta=0.05\) & \(r_{N} \cong r_{R}+\eta=1.00\) \\
\hline  & Sease ofthe \\
\hline
\end{tabular}

\section*{End of Aside}

\section*{Prices Double Every Year}

 is a nominal rate.
```

