

The Optimal Inflation Rate

- The private cost of holding money is r_{N}
- Economic Efficiency requires setting $\mathrm{PC}=\mathrm{SC}$.

```
KENTSTATE
```


The Optimal Inflation Rate

- The private cost of holding money is r_{N}
- Economic Efficiency requires setting $\mathrm{PC}=\mathrm{SC}$.
$S C=0$

The Optimal Inflation Rate

$$
r_{N}=r_{R}+\eta_{e}=0
$$

KENTSTATE

The Optimal Inflation Rate

$$
\begin{gathered}
r_{N}=r_{R}+\eta_{e}=0 \\
\eta_{e}=-r_{R}<0
\end{gathered}
$$

The Optimal Inflation Rate

$$
\longrightarrow \quad \eta_{e}=-r_{R}<0
$$

$$
\eta_{e}=\frac{\Delta M}{M}-\frac{\Delta Y}{Y}
$$

$$
\frac{\Delta M}{M}=\frac{\Delta Y}{Y}-r_{R}<0
$$

The Optimal Inflation Rate

$$
\begin{aligned}
& \eta_{e}=-r_{R}<0 \\
& \longrightarrow \eta_{e}=\frac{\Delta M}{M}-\frac{\Delta Y}{Y}
\end{aligned}
$$

$$
\frac{\Delta M}{M}=\frac{\Delta Y}{Y}-r_{R}<0
$$

KENTSTATE

Conclusion

- A 1% inflation rate costs $\cong \$ 250$ million
- Concentrate on price stability

The Optimal Inflation Rate

$$
\begin{gathered}
\eta_{e}=-r_{R}<0 \\
\eta_{e}=\frac{\Delta M}{M}-\frac{\Delta Y}{Y}
\end{gathered}
$$

$\longrightarrow \frac{\Delta M}{M}=\frac{\Delta Y}{Y}-r_{R}<0$
KENTSTATE

Uncertainty Costs

- Suppose next year's inflation rate is equally likely to be three, six, or nine percent.

$$
\begin{aligned}
& P(3 \%)=\frac{1}{3} \\
& P(6 \%)=\frac{1}{3} \\
& P(9 \%)=\frac{1}{3}
\end{aligned}
$$

KENTSTATE

Production

- If the inflation rate turns out to be exactly six percent, the right price would be $\$ 1.00$ each.

KENTSTATE
Optimal Inflation

Production

- If the inflation rate turns out to be 3%, he will have overpriced.

KENTSTATE
Optimal Inflation

Production

- If the inflation rate turns out to be 9%, he will have under priced.

KENTSTATE
Optimal Inflation

Production

- If the inflation r If the uncertainty can percent, the rigt be ended, Acme can widgets would 1 make more money. more, but make
- If the inflation r At $3 \%, \pi=\$ 70$ percent, widget At $6 \%, \pi=\$ 100$
both demand an

$$
\text { At } 9 \%, \pi=\$ 70
$$

KENTSTATE

Production

- If the inflation rate turns At $3 \%, \pi=\$ 70$ percent, the right price v
- If the inflation rate turns At $6 \%, \pi=\$ 100$ widgets would be priced At $9 \%, \pi=\$ 70$ sell
more, but make less molnc. more, but make less morny.
$E(\pi)=\frac{1}{3} \$ 70+\frac{1}{3} \$ 100+\frac{1}{3} \$ 70=\$ 80_{\text {;h }}^{\text {ee }}$ and

KENTSTATE

Production

- If the inflation rate tur If no uncertainty, percent, the right price
- If the inflation rate tur $\pi=\$ 100 \mathrm{nt}$, widgets would be priced 3% too low. He will sell more, but make less money.
- If the inflation rate turns out to be only three percent, widgets will be priced 3% too high and both demand and profits will suffer.

Extra Uncertainty

Suppose

$$
P(0 \%)=\frac{1}{3} \quad \text { At } 0 \%, \pi=\$ 50
$$

$$
P(6 \%)=\frac{1}{3}
$$

$$
P(12 \%)=\frac{1}{3}
$$

$$
\text { At } 12 \%, \pi=\$ 50
$$

KENTSTATE

Extra Uncertainty

Suppose

$$
\begin{array}{rr}
P(0 \%)=\frac{1}{3} & \text { At } 0 \%, \pi=\$ 50 \\
\cdots 1 & \text { At } 6 \%, \pi=\$ 100 \\
E(\pi)=\frac{1}{3} \$ 50+\frac{1}{3} \$ 100+\frac{1}{3} \$ 50=\$ 67 \\
r(1 \angle \% 0)=\frac{3}{3} & \text { At } 12 \%, \pi=\$ 50
\end{array}
$$

KENTSTATE

