

The Basic Steps

- Plot the reaction functions
- If B produces nothing, A behaves like a monopoly
- If B produces competitive output, A produces nothing
- Solve for their intersection

A Second Example

$$
\begin{gathered}
Q=200-5 P . \\
M C=\$ 10 .
\end{gathered}
$$

A Second Example

$$
\begin{gathered}
Q=200-5 P . \\
M C=\$ 10 .
\end{gathered}
$$

- The Competitive Solution requires that $\mathrm{P}=$ MC , so $\mathrm{Q}=200-5(10)=150$.

$$
\mathrm{KENT}_{N} \mathrm{~S}_{1} \mathrm{STATE}_{1} \mathrm{~T}_{i} \quad \text { A Second Cournot Example }
$$

A Second Example

$$
\begin{gathered}
Q=200-5 P . \\
M C=\$ 10 .
\end{gathered}
$$

- For the Monopoly Solution, we require that $\mathrm{MR}=\mathrm{MC}$, as will occur at $\mathrm{Q}=75$.

Duopoly Reaction Functions

- When B produces nothing A should react by producing the monopoly output (75).

Duopoly Reaction Functions

- When B produces nothing A should react by producing the monopoly output (75).
- When B produces the output of the competitive industry (150), A should react by producing nothing.

KENTSTATE

Duopoly Reaction Functions

- When B produces nothing A should react by producing the monopoly output (75).
- When B produces the output of the competitive industry (150), A should react by producing nothing.
- Similar rules apply for B's reactions.

KENTSTATE A Second Cournot Example

Next Steps

- Generalize to include more than two firms.
- Develop a concept called Nash Equilibrium.
- Develop an alternative duopoly model, the Bertrand Model.

KENTSTATE

End

