A Spreadsheet Approach

KENTSTATE

A spreadsheet approach

\boldsymbol{Q}	$\boldsymbol{P}=$ $\mathbf{5 0 -}-$ $(1 / 2) \boldsymbol{Q}$	\boldsymbol{R} $=\boldsymbol{P Q} \boldsymbol{Q}$	$\boldsymbol{M R}$	\boldsymbol{C} $=$ $5 \boldsymbol{Q}$	$\boldsymbol{M C}$	$\boldsymbol{\pi}$
1	$\$ 49.50$	$\$ 49.50$	$\$ 49.50$	$\$ 5$	$\$ 5$	$\$ 44.50$
2						
3						

KENTSTATE

A spreadsheet approach

\boldsymbol{Q}	$\boldsymbol{P}=$ $50-$ $(1 / 2) \boldsymbol{Q}$	\boldsymbol{R} $=\boldsymbol{P Q} \boldsymbol{Q}$	$\boldsymbol{M R}$	\boldsymbol{C} $=$ $5 Q$	$\boldsymbol{M C}$	$\boldsymbol{\pi}$
1	$\$ 49.50$	$\$ 49.50$	$\$ 49.50$	$\$ 5$	$\$ 5$	$\$ 44.50$
2	$\$ 49.00$	$\$ 98.0$	$\$ 48.50$	$\$ 10$	$\$ 5$	$\$ 88$
3						

KENTSTATE

A spreadsheet approach

\boldsymbol{Q}	$\boldsymbol{P}=$ $50-$ $(1 / 2) Q$	\boldsymbol{R} $=\boldsymbol{P Q} Q$	$\boldsymbol{M R}$	\boldsymbol{C} $=$ $5 Q$	$\boldsymbol{M C}$	$\boldsymbol{\pi}$
1						
2						
3						

KENTSTATE
A Spreadsheet Approach

A spreadsheet approach

\boldsymbol{Q}	$\boldsymbol{P}=$ $50-$ $(1 / 2) \boldsymbol{Q}$	\boldsymbol{R} $=\boldsymbol{P Q} \boldsymbol{Q}$	$\boldsymbol{M R}$	\boldsymbol{C} $=$ $5 \boldsymbol{Q}$	$\boldsymbol{M C}$	$\boldsymbol{\pi}$
1	$\$ 49.50$	$\$ 49.50$	$\$ 49.50$	$\$ 5$	$\$ 5$	$\$ 44.50$
2	$\$ 49.00$	$\$ 98.0$	$\$ 48.50$			
3						

KENTSTATE
A Spreadsheet Approach

A spreadsheet approach

\boldsymbol{Q}	$\boldsymbol{P}=$ $50-$ $(1 / 2) \boldsymbol{Q}$	\boldsymbol{R} $=\boldsymbol{P Q} \boldsymbol{Q}$	$\boldsymbol{M R}$	\boldsymbol{C} $=$ $5 \boldsymbol{Q}$	$\boldsymbol{M C}$	$\boldsymbol{\pi}$
1	$\$ 49.50$	$\$ 49.50$	$\$ 49.50$	$\$ 5$	$\$ 5$	$\$ 44.50$
2	$\$ 49.00$	$\$ 98.0$	$\$ 48.50$	$\$ 10$	$\$ 5$	$\$ 88$
3	$\$ 48.5$	$\$ 145.5$	$\$ 47.50$	$\$ 15$	$\$ 5$	$\$ 130.5$

A spreadsheet approach

\boldsymbol{Q}	$\boldsymbol{P}=$ $50-$ $(1 / 2) Q$	\boldsymbol{R} $=\boldsymbol{P Q} Q$	$\boldsymbol{M R}$	\boldsymbol{C} $=$ $5 Q$	$\boldsymbol{M C}$	$\boldsymbol{\pi}$
1	$\$ 49.50$	$\$ 49.50$	$\$ 49.50$	$\$ 5$	$\$ 5$	$\$ 44.50$
2	$\$ 49.00$	$\$ 98.0$	$\$ 48.50$	$\$ 10$	$\$ 5$	$\$ 88$
3	$\$ 48.5$	$\$ 145.5$	$\$ 47.50$	$\$ 15$	$\$ 5$	$\$ 130.5$
10	45	$\$ 450.0$	$\$ 40.50$	$\$ 50$	5	$\$ 400$

KENTSTATE
A Spreadsheet Approach

A spreadsheet approach

\boldsymbol{Q}	\boldsymbol{P}	\boldsymbol{R}	$\boldsymbol{M R}$	\boldsymbol{C}	$\boldsymbol{M C}$	$\boldsymbol{\pi}$
1	$\$ 49.50$	$\$ 49.50$	$\$ 49.50$	$\$ 5$	$\$ 5$	$\$ 44.50$
2	$\$ 49.00$	$\$ 98.0$	$\$ 48.50$	$\$ 10$	$\$ 5$	$\$ 88$
3	$\$ 48.5$	$\$ 145.5$	$\$ 47.50$	$\$ 15$	$\$ 5$	$\$ 130.5$
44	$\$ 28.00$	$\$ 1232$	$\$ 6.5$	$\$ 220$	$\$ 5$	$\$ 1012$
45	$\$ 27.50$	$\$ 1237.5$	$\$ 5.5$	$\$ 225$	$\mathbf{\$ 5}$	$\mathbf{\$ 1 0 1 2 . 5}$
46	$\$ 27.00$	$\$ 1242$	$\$ 4.5$	$\$ 230$	$\mathbf{\$ 5}$	$\mathbf{\$ 1 0 1 2}$

KENTSTATE

Which Should I Use?

- Some students are tempted to learn only one of the two techniques.
- That would not be wise.

A spreadsheet approach

\boldsymbol{Q}	\boldsymbol{P}	\boldsymbol{R}	$\boldsymbol{M R}$	\boldsymbol{C}	$\boldsymbol{M C}$	$\boldsymbol{\pi}$
1	$\$ 49.50$	$\$ 49.50$	$\$ 49.50$	$\$ 5$	$\$ 5$	$\$ 44.50$
2	$\$ 49.00$	$\$ 98.0$	$\$ 48.50$	$\$ 10$	$\$ 5$	$\$ 88$
3	$\$ 48.5$	$\$ 145.5$	$\$ 47.50$	$\$ 15$	$\$ 5$	$\$ 130.5$
44	$\$ 28.00$	$\$ 1232$	$\$ 6.5$	$\$ 220$	$\mathbf{\$ 5}$	$\mathbf{\$ 1 0 1 2}$
45	$\$ 27.50$	$\$ 1237.5$	$\$ 5.5$	$\mathbf{\$ 2 2 5}$	$\mathbf{\$ 5}$	$\mathbf{\$ 1 0 1 2 . 5}$
46	$\mathbf{\$ 2 7 . 0 0}$	$\$ 1242$	$\$ 4.5$	$\mathbf{\$ 2 3 0}$	$\mathbf{\$ 5}$	$\mathbf{\$ 1 0 1 2}$

KENTSTATE
A Spreadsheet Approach

Which Should I Use?

- Some students are tempted to learn only one of the two techniques.

KENTSTATE

Problem I

- Suppose

$$
\begin{gathered}
Q=50-P \\
T C=5 Q
\end{gathered}
$$

Problem I

- Suppose
$Q=50-P$
$T C=5 Q$

KENTSTATE

Problem I

- Suppose
$Q=50-P$
$T C=5 Q$

Q	22.5
P	27.5
Revenue	618.75
Cost	112.5
Profit	506.25

KENTSTATE

Problem II

Problem II

Quantity	Price	Cost
0		6
1	15	11
2	13	16
3	11	21
4	8	26
5	7	31
$\mathbf{6}$	$\mathbf{6}$	$\mathbf{3 6}$
$\mathbf{7}$	$\mathbf{5}$	$\mathbf{4 1}$

KENTSTATETE
A Spreadsheet Approach

Problem II

Q	3
P	11
Revenue	33
Cost	21
Profit	12

End

