Applying the Elasticity Rules

$$
P=\left(\frac{M C}{1+\frac{1}{\eta}}\right)
$$

KENTSTATE

Some Propositions

- We develop these elasticity relations to make some points about how a monopolist behaves.

First Proposition

- The Monopolist will always price where demand is elastic, that is when $\eta<-1$.

First Proposition

- The Monopolist will always price where demand is elastic, that

$$
M R=P\left(1+\frac{1}{\eta}\right)
$$ is when $\eta<-1$.

- Profit maximization requires $\mathrm{MR}>0$.

First Proposition

- The Monopolist will always price where demand is elastic, that is when $\eta<-1$.
- Profit maximization requires $\mathrm{MR}>0$.

$$
\begin{gathered}
M R=P\left(1+\frac{1}{\eta}\right) \\
1+\frac{1}{\eta}>0
\end{gathered}
$$

First Proposition

- The Monopolist will always price where demand is elastic, that is when $\eta<-1$.
- Profit maximization

$$
M R=P\left(1+\frac{1}{\eta}\right)
$$

$$
1+\frac{1}{\eta}>0
$$ requires MR >0.

- The only way that can be true is if $\eta<-1$

KENTSTATE

Applying the Elasticity Rules

First Proposition

- The Monopolist will always price where demand is elastic, that is when $\eta<-1$.
- Profit maximization requires $\mathrm{MR}>0$.
- The only way that can be true is if $\eta<-1$
- To illustrate why, compute MR for $\eta=-2$ and $\eta=-1 / 2$

First Proposition

- The Monopolist will always price where demand is elastic, that is

$$
M R=P\left(1+\frac{1}{n}\right)
$$ when $\eta<-1$.

- Profit maximization requires MR >0.

$$
1+\frac{1}{\eta}>0
$$

- The only way that can be true is if $\eta<-1$
- To illustrate why, compute $M R=P\left(1+\frac{1}{-0.5}\right)=-P$ MR for $\eta=-2$ and $\eta=-1 / 2$

KENTSTATE
Applying the Elasticity Rules

Second Proposition

- For the straight line demand curve, MR is zero midpoint between the origin and the quantity demanded at $\mathrm{P}=0$.
$\mathrm{KENT}_{\sim 1} \mathrm{STALI}_{1}$ TATE $_{T} \quad$ Applying the Elasticity Rules

Second Proposition

- For the straight line demand curve, MR is zero midpoint between the origin and the quantity demanded at $\mathrm{P}=0$.
- At the midpoint, we know $\eta=-1$

Second Proposition

- For the straight line demand curve, MR is zero midpoint between

$$
M R=P\left(1+\frac{1}{n}\right)
$$ the origin and the quantity demanded at $\mathrm{P}=0$.

- At the midpoint, we know $\eta=-1$

First Application

- Suppose a firm develops a cure for cancer: one pill a day, no side effects. True or false: there would be virtually no elasticity of demand for this wonder drug.

First Application

- Suppose a firm develops a cure for cancer: one pill a day,

$$
M R=P\left(1+\frac{1}{\eta}\right)
$$ no side effects. True or false: there would be virtually no elasticity of demand for this wonder drug.

KENTSTATE

First Application

- Suppose a firm develops a cure for cancer: one pill a day,

$$
M R=P\left(1+\frac{1}{\eta}\right)
$$ no side effects. True or false: there would be virtually no elasticity of demand for this wonder drug.

- False

KENTSTATE

Second Application

- True or false: a monopolist always
faces inelastic demand
\qquad

Third Application

- Wilma Trotter has
shows that a new
product has a price
elasticity of demand of
-1.25 . It will cost $\$ 10$
to make the product.
How should the
product be priced?

KENTSTATE

Third Application

- Wilma Trotter has shows that a new product has a price elasticity of demand of
-1.25 . It will cost $\$ 10$ to make the product. $P=\left(\frac{M C}{1+\frac{1}{n}}\right)$ How should the
 product be priced?

Third Application

- Wilma Trotter has shows that a new product has a price elasticity of demand of -1.25 . It will cost $\$ 10$ to make the product.
 How should the product be priced?
-\$50

Third Application

- Wilma Trotter has shows that a new product has a price elasticity of demand of -1.25 . It will cost $\$ 10$ to make the product. How should the product be priced?

$$
P=\left(\frac{10}{1+\frac{1}{-1.25}}\right)
$$

KENTSTATE
UNIVABIT

product has a price
elasticity of demand of
-1.25 . It will cost $\$ 10$
to make the product.
How should the
product be priced?

KENTSTATE

Third Application

- Wilma Trotter has shows that a new

Fourth Application

-The following data display retail prices and wholesale costs for two products. What are the price elasticities of demand?

Item	Retail Price	Wholesale Price	Elasticity
Woman's Dress	$\$ 100$	$\$ 50$	$?$
New Car	$\$ 20,000$	$\$ 19,000$	$?$

KENTSTATE Applying the Elasticity Rules

Fourth Application

Item	Retail Price	Wholesale Price	Elasticity
Woman's Dress	$\$ 100$	$\$ 50$	$?$
New Car	$\$ 20,000$	$\$ 19,000$	$?$

$\frac{P-M C}{P}=-\frac{1}{\eta}$
KENTSTATE

Fourth Application

Item	Retail Price	Wholesale Price	Elasticity
Woman's Dress	$\$ 100$	$\$ 50$	$\eta=-2$
New Car	$\$ 20,000$	$\$ 19,000$	$?$

$$
\frac{P-M C}{P}=-\frac{1}{\eta}
$$

KENTSTATE
Applying the Elasticity Rules

Fourth Application

Item	Retail Price	Wholesale Price	Elasticity
Woman's Dress	$\$ 100$	$\$ 50$	$\frac{P-M C}{P}=-\frac{1}{\eta}$
New Car	$\$ 20,000$	$\$ 19,000$	$?$

$\frac{P-M C}{P}=-\frac{1}{\eta}$
KENTSTATE Applying the Elasticity Rules

Fourth Application

Fourth Application			
Item Retail Price Wholesale Price Woman's Dress $\$ 100$ $\$ 50$ New Car $\$ 20,000$ $\$ 19,000$			

$$
\frac{P-M C}{P}=-\frac{1}{\eta}
$$

KENTSTATE
Applying the Elasticity Rules

Fourth Application

Item	Retail Price	Wholesale Price	Elasticity
Woman's Dress	$\$ 100$	$\$ 50$	$\frac{1}{2}=-\frac{1}{\eta}$
New Car	$\$ 20,000$	$\$ 19,000$	$?$

$$
\frac{P-M C}{P}=-\frac{1}{\eta}
$$

KENTSTATE

Fourth Application

Item	Retail Price	Wholesale Price	Elasticity
Woman's Dress	$\$ 100$	$\$ 50$	$\eta=-2$
New Car	$\$ 20,000$	$\$ 19,000$	$\frac{P-M C}{P}=-\frac{1}{\eta}$

$$
\frac{P-M C}{P}=-\frac{1}{\eta}
$$

KENTSTATE Applying the Elasticity Rules

Fourth Application

$\begin{array}{l\|l\|l} \hline \text { Itam } & \text { Datail Drico } & \text { wholocole } \\ 20000-19000 & -1 \end{array}$			Elasticity
20000		η	$\eta=-2$
New Car	\$20,000	\$19,000	

$$
\frac{P-M C}{P}=-\frac{1}{\eta}
$$

KENTSTATE

Fourth Application

Item	Retail Price	Wholesale Price	Elasticity
Woman's Dress	$\$ 100$	$\$ 50$	$\eta=-2$
New Car	$\$ 20,000$	$\$ 19,000$	$\eta=-20$

$$
\frac{P-M C}{P}=-\frac{1}{\eta}
$$

KENTSTATE

Fifth Application

- Suppose it costs a monopolist $\$ 10$ to make a product. True or false: If demand increases the monopolist will raise the price.

Fifth Application

- Suppose it costs a monopolist $\$ 10$ to make a product. True or false: If demand increases the monopolist will raise the price.

KENTSTATE

Fifth Application

- Suppose it costs a monopolist \$10 to make a product. True or false: If demand increases the monopolist will raise the price.

Fifth Application

- Suppose it costs a monopolist $\$ 10$ to make a product. True or false: If demand increases the monopolist will raise the price.

KENTSTATE

Applying the Elasticity Rules

- It Depends

KENTSTATE

Fifth Application

- Suppose it costs a monopolist $\$ 10$ to make a product. True or false: If demand increases the monopolist will raise the price.

Sixth Application

- Suppose it costs a monopolist $\$ 10$ to make a product. True or false: If demand increases the monopolist will make more money

Sixth Application

- Suppose it costs a monopolist $\$ 10$ to make a product. True or false: If demand increases the monopolist will make more money
- True

Seventh Application

- True or false: it is a fair question on an exam to ask you to draw a monopolist's supply curve.

KENTSTATE

- A fair question, but the monopolist never has a supply curve.
- True or false: it is a fair question on an exam to ask you to draw a monopolist's supply curve.

KENTSTATE

Seventh Application

- A fair question, but the monopolist never has a supply curve.
- The amount supplied at a given price depends on elasticity, not just price.

