Budget Constraints

More on the Theory of Choice

- We have talked about indifference curves to represent a consumer's preferences.
- That is not all of the story. Budget realities play a role.
$\mathrm{KENTN}_{\sim 1} \operatorname{STATH}_{1+1} \quad$ Budget Constraints

Marginal Rate of Substitution

$$
U=A B
$$

- In this example, the following points lie on a single indifference curve:

Apples	16	8	5.33	4	3.2	2.67
Bananas	1	2	3	4	5	6

```
KENTSTATE
```


Marginal Rate of Substitution

$$
U=A B
$$

- In this example, the following points lie on a single indifference curve:

Apples	16	8	5.33	4	3.2	2.67
Bananas	1	2	3	4	5	6

Marginal Rate of Substitution

$$
U=A B
$$

- In this example, the following points lie on a single indifference curve:

Apples	16	8	5.33	4	3.2	2.67
Bananas	1	2	3	4	5	6

KENTSTATE

Marginal Rate of Substitution

- How many apples is our consumer willing to substitute for an additional banana?

Apples	$16 \rightarrow 8$	5.33	4	3.2	2.67	
Bananas	1	2	3	4	5	6
MRS		$\mathbf{8 . 0 0}$	$\mathbf{2 . 6 7}$	$\mathbf{1 . 3 3}$	$\mathbf{0 . 8 0}$	$\mathbf{. 0 5 3}$

KENTSTATE
Budget Constraints

Declining MRS

- MRS is declining. With more bananas, the number of apples you will give up to get another banana declines

Apples	16	8	5.33	4	3.2	2.67
Bananas	1	2	3	4	5	6
MRS		$\mathbf{8 . 0 0}$	$\mathbf{2 . 6 7}$	$\mathbf{1 . 3 3}$	$\mathbf{0 . 8 0}$	$\mathbf{. 0 5 3}$

KENTSTATE

MRS and Indifference Curves

Marginal Rate of Substitution

- How many apples is our consumer willing to substitute for an additional banana?

Apples	$16 \rightarrow 8$	$5.33 \rightarrow 4$	3.2	2.67		
Bananas	1	2	3	4	5	6
MRS		$\mathbf{8 . 0 0}$	$\mathbf{2 . 6 7}$	$\mathbf{1 . 3 3}$	$\mathbf{0 . 8 0}$	$\mathbf{. 0 5 3}$

KENTSTATE
Budget Constraints

The Budget Constraint

- Indifference curves, such as shown on the right, tell us about preferences

The Budget Constraint

- Indifference curves, such as shown on the right, tell us about preferences
- There is another part of the story, the budget constraint

The Budget Constraint

- Suppose apples sell for p_{A}; bananas for p_{B}

The Budget Constraint

- Suppose apples sell for p_{A}; bananas for p_{B}
- The consumer has income Y

$$
p_{a} A+p_{b} B=Y
$$

KENTSTATE

The Budget Constraint

- Suppose apples sell for p_{A}; bananas for p_{B}
- The consumer has income Y

$$
\begin{gathered}
p_{a} A+p_{b} B=Y \\
p_{a} A+p_{b} B-p_{a} A=Y-p_{a} A \\
p_{b} B=Y-p_{a} A
\end{gathered}
$$

KENTSTATE

The Budget Constraint

- Suppose apples sell for p_{A}; bananas for p_{B}
- The consumer has income Y

$$
\begin{gathered}
p_{a} A+p_{b} B=Y \\
p_{a} A+p_{b} B-p_{a} A=Y-p_{a} A \\
p_{b} B=Y-p_{a} A \\
1 / p_{b}\left(p_{b} B\right)=1 / p_{b}\left(Y-p_{a} A\right)
\end{gathered}
$$

KENTSTATE

Graphing The Budget Constraint

- If we spend everything on bananas, we can buy $\mathrm{Y} / \mathrm{p}_{\mathrm{b}}$ bananas.
- If we spend everything on apples, we can buy $\mathrm{Y} / \mathrm{p}_{\mathrm{a}}$ apples
$B=\left(1 / p_{b}\right) Y-\left(p_{a} / p_{b}\right) A$

KENTSTATE

Constrained Maximization

- In fact, given the budget, 2 is the best we can do.
- This choice maximizes utility subject to the budget constraint

KENTSTATE

Constrained Maximization

- Look at three possible choices: 1,2 , and 3
- 1 is the best, but we cannot afford it
- We can afford 2 and 3, but 2 lies on a higher indifference curve

KENTSTATE

The Budget Constraint

- At the utilitymaximizing point, the budget line is just tangent to the indifference curve.

The Budget Constraint

- At the utility$\left.\begin{aligned} & \text { maximizing point, the } \mathrm{Y} / \mathrm{p} \mid \mathrm{A} \\ & \text { budget line is just }\end{aligned} \right\rvert\, \bullet$ - 1 tangent to the indifference curve.
- It just touches the curve.

MRS and MRT

- The Marginal Rate of Substitution (MRS) is the rate at which we will substitute bananas for apples.

KENTSTATE

MRS and MRT

- The Marginal Rate of Substitution (MRS) is the rate at which we will substitute bananas for apples.
- The Marginal Rate of Transformation (MRT) is the rate at which we can substitute bananas for apples.

MRS and MRT

- Utility maximization requires that

$$
M R S=M R T
$$

- The Marginal Rate of Substitution (MRS) is the rate at which we will substitute bananas for apples.
- The Marginal Rate of Transformation (MRT) is the rate at which we can substitute bananas for apples.

MRS and MRT

UR1 THAL Budge Contrant

MRS and MRT

- Utility maximization requires that

$$
M R S=M R T
$$

- Why? Suppose $\mathrm{p}_{\mathrm{a}}=50 \phi$ and $\mathrm{p}_{\mathrm{b}}=10 \phi$

MRS and MRT

- Utility maximization requires that

$$
M R S=M R T
$$

- Why? Suppose $\mathrm{p}_{\mathrm{a}}=50 \not \subset$ and $\mathrm{p}_{\mathrm{b}}=10 \phi$

$$
M R T=50 \phi / 10 \phi=5
$$

- Suppose MRS = 4. That is, I would be willing to take four bananas for one apple.

KENTSTATE

MRS and MRT

- Suppose MRS $=6$. That is, I would be willing to take six bananas for one apple.

MRS and MRT

- Utility maximization requires that

$$
M R S=M R T
$$

- Why? Suppose $\mathrm{p}_{\mathrm{a}}=50 \not \subset$ and $\mathrm{p}_{\mathrm{b}}=10 ¢$

$$
M R T=50 \phi / 10 \phi=5
$$

KENTSTATE

MRS and MRT

Sell an apple, buy five zation requires that bananas and be better off

- wny! suppose $p_{a}=50 ¢$ and $p_{b}=10 ¢$
$M R T=50 \phi / 10 \phi=5$
- Suppose MRS = 4. That is, I would be willing to take four bananas for one apple. .

KENTSTATE

MRS and MRT

- Suppose MRS $=6$. That is, I would be willing to take six bananas for one apple.
- Another way of putting that is that I would be willing to give up six bananas for one apple'

MRS and MRT

- Suppose MRS $=6$. That is, I would be willing to take six bananas for one apple.
 be willing to give apple.

End
©2004 Charles W. Upton

