

The Problem - Part I

- The industry demand curve for widgets is

$$
Q=600-10 P .
$$

The Problem - Part I

- The industry demand curve for widgets is

$$
Q=600-10 P
$$

- Forty plants produce widgets with costs

$$
27+3 q^{2}
$$

- Find P, Q and π

KENTSTATE Competition and Monopoly I

Demand and Supply

- We know industry demand

$$
Q=600-10 P
$$

Demand and Supply

- We know industry demand

$$
Q=600-10 P
$$

- We must find industry supply. The cost function is

$$
27+3 q^{2}
$$

KENTSTATE

Finding Firm Supply

- We know industry demand

$$
Q=600-10 P
$$

- We must find industry supply. The cost function is

$$
27+3 q^{2} \Rightarrow M C=6 q
$$

KENTSTATE

Finding Firm Supply

- We know industry demand

$$
Q=600-10 P
$$

- We must find industry supply. The cost function is

$$
27+3 q^{2} \Rightarrow M C=6 q
$$

Each firm produces where MC $=\mathrm{P}$

$$
6 q=P
$$

KENTSTATE

Finding Industry Supply

$$
q=P / 6
$$

Finding Industry Supply

$$
q=P / 6
$$

- Industry Supply is then forty times that or

$$
Q=40 P / 6
$$

Finding Industry Supply

$$
q=P / 6
$$

- Industry Supply is then forty times that or

$$
Q=40 P / 6
$$

- Equate Demand and Supply
$D=S=40 P / 6$
KENTSTATE

Finding Price

$600-10 \mathrm{P}=40 \mathrm{P} / 6$

Finding Price

$$
600-10 P=40 P / 6
$$

$$
3600-60 P=40 P
$$

$$
3600=100 P
$$

Finding Quantity

$$
\begin{gathered}
600-10 P=40 P / 6 \quad Q=600-10 P \\
3600-60 P=40 P \\
3600=100 P \\
100 P=3600 \\
P=36
\end{gathered}
$$

KENTSTATE

$$
\begin{array}{cc}
600-10 P=40 P / 6 & Q=600-10 P \\
3600-60 P=40 P & Q=600-10(36) \\
3600=100 P & \\
100 P=3600 & \\
P=36 &
\end{array}
$$

KENTSTATE

Finding Quantity

$$
\begin{array}{cc}
600-10 P=40 P / 6 & Q=600-10 P \\
3600-60 P=40 P & Q=600-10(36) \\
3600=100 P & Q=600-360 \\
100 P=3600 & Q=240 \\
P=36 &
\end{array}
$$

Finding Each Firm's Output

$$
\begin{array}{cc}
600-10 P=40 P / 6 & Q=600-10 P \\
3600-60 P=40 P & Q=600-10(36) \\
3600=100 P & Q=600-360 \\
100 P=3600 & Q=240 \\
P=36 & \begin{array}{c}
q=Q / 40 \\
\\
\end{array} \quad \begin{array}{c}
q=6
\end{array}
\end{array}
$$

Profits

$$
\begin{aligned}
P & =36 \\
q & =6
\end{aligned} \quad \pi=P Q-C
$$

Profits	
$P=36$	$\pi=P Q-C$
$q=6$	$\begin{gathered} P Q=(36)(6)= \\ 216 \end{gathered}$
KENSTSTE	Monoosy 1

Profits	
$P=36$	$\pi=P Q-C$
$q=6$	$\begin{gathered} P Q=(36)(6)= \\ 216 \end{gathered}$
	C= $27+3 q^{2}$
KENTSTATE	somopl 1

Profits	
$P=36$	$\pi=P Q-C$
$q=6$	$\begin{gathered} P Q=(36)(6)= \\ 216 \end{gathered}$
	$C=27+3 q^{2}$
	C= $27+3(6)^{2}$
	C=135
KENTSTATE	monopoy

The Problem - Part II

- Suppose other firms may open a (single) plant. Same cost function.
- Find, P, Q, N, q, and π.

Finding Long Run Marginal Cost

- We know that in the long run, the price will be at the minimum of the firm's AC curve. Lets find that.

KENTSTATE

Finding Long Run Marginal Cost

- We know that in the long run, the price will be at the minimum of the firm's AC curve. Lets find that.
- There are two steps.
- Finding the value of q that minimizes AC
- Finding MC or AC at that value.

KENSTATE

Finding Long Run Marginal Cost

- Two Steps
-Find q
-Find the minimum of AC at that level

KENTSTATE

Finding Long Run Marginal Cost

- The cost function is

$$
C=27+3 q^{2}
$$

KENTSTATE

Finding Long Run Marginal Cost

- The cost function is

$$
\begin{gathered}
C=27+3 q^{2} \\
A C=C / q
\end{gathered}
$$

Finding Long Run Marginal Cost

- The cost function is

$$
\begin{gathered}
C=27+3 q^{2} \\
A C=C / q \\
A C=\frac{27+3 q^{2}}{q}
\end{gathered}
$$

KENTSTATE

Finding Long Run Marginal Cost

- The cost function is

KENTSTATE

$$
\begin{gathered}
C=27+3 q^{2} \\
A C=C / q \\
A C=\frac{27+3 q^{2}}{a} \\
A C=\frac{27}{q}+3 q
\end{gathered}
$$

Finding Long Run Marginal Cost

$$
\begin{aligned}
& A C=\frac{27}{q}+3 q \\
& M C=A C
\end{aligned}
$$

Finding Long Run Marginal Cost

$$
A C=\frac{27}{q}+3 q
$$

$$
M C=A C
$$

Finding Long Run Marginal Cost

$$
\begin{array}{ll}
A C=\frac{27}{q}+3 q & C=27+3 q^{2} \\
M C=A C & M C=6 q
\end{array}
$$

KENTSTATE

Finding Long Run Marginal Cost

$$
\begin{gathered}
\begin{array}{c}
A C=\frac{27}{q}+3 q \quad C=27+3 q^{2} \\
M C=A C \quad M C=6 q
\end{array} \\
6 q=\frac{27}{q}+3 q
\end{gathered}
$$

Finding Long Run Marginal Cost

$$
3 q=\frac{27}{q}
$$

Finding Long Run Marginal Cost

$$
\begin{aligned}
& 6 q=\frac{27}{q}+3 q \quad 3 q^{2}=27 \\
& 3 q=\frac{27}{q} \\
& \text { KENTTATE }
\end{aligned}
$$

Finding Long Run Marginal Cost

$A C$ when $q=3$

Finding Long Run Marginal Cost

$$
\begin{aligned}
& q^{2}=9^{+3 q} \quad 3 q^{2}=27 \\
& q=3_{-q}=\frac{27}{q}
\end{aligned}
$$

KENTSTATE

Finding Long Run Marginal Cost

$$
\begin{gathered}
q=3 \\
A C=\frac{27}{q}+3 q
\end{gathered}
$$

KENTSTATE

Finding Long Run Marginal Cost

$$
\begin{gathered}
q=3 \\
A C=\frac{27}{q}+3 q \\
A C=\frac{27}{3}+3(3)=18
\end{gathered}
$$

Total Output
$A C=18$
$P=18$

Total Output

$A C=18$
$P=18$
$Q=600-10 P$

$$
\begin{aligned}
A C & =18 \\
P & =18 \\
Q & =420 \\
q & =3
\end{aligned}
$$

End

