

Apples and Bananas aren't Everything

- What happens if there are more than two goods?

Apples and Bananas aren't

 Everything- What happens if there are more than two goods?
- Suppose we are making the choice among
- Apples
- Bananas
- Oranges
- Grapefruit

KENTSTATE

Extending the Model

- We could write $\mathrm{U}(\mathrm{A}, \mathrm{B}, \mathrm{O}, \mathrm{G})$

$$
p_{a} A+p_{b} B+p_{o} O+p_{G} G=Y
$$

- This is madness. The graphs get too complicated, even worse when we think about extending to many different goods

The Composite Good

- Let X be the amount we spend on all other goods.

Extending the Model

- We could write $\mathrm{U}(\mathrm{A}, \mathrm{B}, \mathrm{O}, \mathrm{G})$

$$
p_{a} A+p_{b} B+p_{o} O+p_{G} G=Y
$$

KENTSTATE

The Composite Good

- Let X be the amount we spend on all other goods.
- In this case,

$$
X=p_{b} B+p_{o} O+p_{G} G
$$

KENTSTATE

The Composite Good

- Let X be the amount we spend on all other goods.
- In this case,

$$
X=p_{b} B+p_{o} O+p_{G} G
$$

- Our Utility function is now $\mathrm{U}(\mathrm{X}, \mathrm{A})$
- Our budget constraint is now

$$
X+p_{d} A=Y
$$

KENTSTATE

An Application

- A Consumer has income of $\$ 100$ a week. Peaches cost $\$ 1$ each. Show graphically, how many peaches she will purchase.

The Composite Good

- Let X be the amount we spend on all other goods.
- In this case,

$$
X=p_{b} B+p_{o} O+p_{G} G
$$

- Our Utility function is now $\mathrm{U}(\mathrm{X}, \mathrm{A})$

A Peach of a Problem

- She is now offered a chance to purchase peaches, from another vendor. The first 20 cost 50 cents each and others cost $\$ 1.50$ each. Should she switch?

A Peach of a Problem

- She is now offered a chance to purchase peaches, from another vendor. The first 20 cost 50ϕ each and others cost $\$ 1.50$ each. Should she switch?
- It is an all or nothing deal.

A Peach of a Problem

- Some people argue that it makes no difference. Forty peaches cost $\$ 40$.

A Peach of a Problem

- Some people argue that it makes no difference. Forty peaches cost $\$ 40$.
- At the old prices,

$$
M R S=M R T=\$ 1 .
$$

A Peach of a Problem

- Some people argue that it makes no difference. Forty peaches cost $\$ 40$.
- But there is a difference. At the old prices,

$$
M R S=M R T=\$ 1 .
$$

- If the consumer purchases 40 peaches, the MRS is still 1 .

KENTSTATE

A Peach of a Problem

- Some people argue that it makes no difference. Fortv neaches cost $\$ 40$.
- But the The MRT is now $\$ 1.50$ prices,

$$
M R S=M R T=\$ 1 .
$$

- If the consumer purchases 40 peaches, the MRS is still 1 .

A Twist on the Peach Problem

- Suppose she had been offered another deal. The first twenty would cost $\$ 1.50$ and the rest 50ϕ. Should she take that deal?

