

Our Example

$$
Q=100-2 p
$$

$$
M C=5
$$

The Reaction Function

$$
\begin{aligned}
& q_{A}=45-(1 / 2) q_{B} \\
& q_{B}=45-(1 / 2) q_{A}
\end{aligned}
$$

```
KENTSTATE
```


The Reaction Function

$$
\begin{aligned}
& q_{A}=45-(1 / 2)\left(q_{B}+q_{C}\right) \\
& q_{B}=45-(1 / 2)\left(q_{A}+q_{C}\right)
\end{aligned}
$$

The Reaction Function

$$
q_{A}=45-(1 / 2)\left(q_{B}+q_{C}\right)
$$

The Reaction Function

$$
\begin{gathered}
q_{A}=45-(1 / 2)\left(q_{B}+q_{C}\right) \\
q_{A}=45-(1 / 2)\left(q_{A}+q_{A}\right) \\
q_{A}=22.5
\end{gathered}
$$

The Reaction Function

$$
\begin{gathered}
q_{A}=45-(1 / 2)\left(q_{B}+q_{C}\right) \\
q_{A}=45-(1 / 2)\left(q_{A}+q_{A}\right) \\
q_{A}=22.5 \\
q_{A}+q_{B}+q_{C}=67.5
\end{gathered}
$$

The Wudget Problem

- To Review

$$
Q=630,000-300 p
$$

KENTSTATE

The Wudget Problem

If $\mathrm{MC}=\$ 400$ in

$$
\begin{array}{cl}
\text { year one, the } & 900-300 p \\
\text { monopoly } & =\$ 500
\end{array}
$$

maximizes profits izes profits by selling with $\mathrm{P}=\$ 1250$ and ice of $\$ 1300$

$$
\mathrm{Q}=255,000
$$

The Wudget Problem

- To Review

$$
\begin{gathered}
Q=630,000-300 p \\
M C=\$ 500
\end{gathered}
$$

- A monopoly maximizes profits by selling 240,000 units at a price of $\$ 1300$.
- Let's call this year zero.

The Wudget Problem

- Now suppose that in year two a second firm starts making the wudget. MC $=\$ 400$.

The Wudget Problem

- Now suppose that in the second year a second firm starts making the wudget. MC $=\$ 400$.

$$
Q_{C}=640,000-300(400)=
$$ $630,000-120,000=510,000$

Year Three Sales

- A third firm starts making the Wudget.

$$
\mathrm{MC}=\$ 400 .
$$

Year Three Sales and Price

$$
\begin{gathered}
Q_{C}=510,000 \\
Q=(3 / 4) 510,000=382,500 \\
q=127,500
\end{gathered}
$$

KENTSTATE

Year Three Sales and Price

$$
Q_{C}=510,000
$$

_

The Wudget Problem

- Now suppose that in the second year a second firm starts making the wudget. MC $=\$ 400$.

$$
\begin{gathered}
Q_{C}=630,000-300(400)= \\
630,000-120,000=510,000 \\
Q=(2 / 3) 510,000=340,000
\end{gathered}
$$

$$
P=\$ 967
$$

KENTSTATE

Year Three Sales and Price

$$
\begin{gathered}
Q_{C}=510,000 \\
Q=(3 / 4) 510,000=382,500 \\
q=127,500 \\
P=(630,000-382,500) / 300=\$ 825
\end{gathered}
$$

Years Four and Five

- A new firm enters each year

Years Four and Five

- A new firm enters each year.
- Without going through the algebra...
- Year Four:

$$
Q=408,000, q=102,000, P=\$ 740
$$

Year by Year Summary

Year	Price	Quantity
0	$\$ 1300$	240,000
1	$\$ 1250$	255,000
2	$\$ 967$	340,000
3	$\$ 825$	382,500
4	$\$ 740$	408,000
5	$\$ 683$	425,000

Year by Year Summary

	Year	Price	Quantity
	0	\$1300	240,000
	1	\$1250	255,000
	2	\$967	340,000
	3	\$825	382,500
	4	\$740	408,000
	5	\$683	425,000

Conclusion

- As the number of firms grows,

$$
P \rightarrow M C
$$

- The Cournot model gives us a series of predictions about how that will occur.
$\mathrm{KENT}_{v N i} \mathrm{STATH}_{\mathrm{T}} \mathrm{T}$

How Many Economists

 does it take...?- In fact we know the world is not as simple as the Cournot model
- So, how many firms does it take to get to the competitive price?

KENTSTATE

The Appeal of the Cournot Model

- With two firms, why not simply try the cooperative solution.
- With five firms...

How Many Economists does it take...?

- Leonard Wiess Studied the process

KENTSTATE

