

A Golden Oldie

- If demand is to be restricted to 200,000 what single fee would you recommend?
- If children and adults can be charged a separate fee, what fees would you recommend?
- Should the park expand capacity in that case?

Extending the Problem

KENT STATE

Charging a Single Fee • Demand for the park: $V_c = 180,000 - 20,000p_c$ $V_A = 120,000 - 10,000p_a$

Charging Separate Fees

$500,000-200,000p_c+30,000p_c^2$

- In sum, we can achieve our objective with many different values of p_c (and p_a).
- Lets find the one that minimizes DWL.
- To do that....

KENT STATE

Extending the Problem

Charging Separate Fees

$500,000-200,000p_c+30,000p_c^2$

- In sum, we can achieve our objective with many different values of p_c (and p_a).
- Lets find the one that minimizes DWL.
- To do that....
 - Take the derivative
 - Set it equal to zero

KENT STATE

Extending the Problem

	End ©2004 Charles
	©2004 Charles W. Upton
KENT STATE	Extending the Problem