

Going to College • A HS graduate earns $H_1, H_2, H_3,...;$ a college graduate earns $C_1, C_2, C_3, ...$ • The present values are $PV^H = H_f((1+r) + H_g/(1+r)^2 + H_g/(1+r)^3 + H_d/(1+r)^4 + ...$ $PV^C = C_f/(1+r) + C_g/(1+r)^2 + C_g/(1+r)^3 + C_d/(1+r)^4 + ...$

The Crucial Ratio			
	Annual Interest Rate	$\frac{I_h}{I_c}$	
	5.0%	1.22	
	7.5%	1.34	
	10.0%	1.46	
Going to College			

Implications of the Model

- The wage differential is required to justify the investment. The differential changes with real interest rates.
- The highest return from going to college is earned by going when you are young.

KENT STATE

Going to College

