

Utility Functions

- Individuals have utility functions $U(A, B)$

KENTSTATE

Utility Functions

- If $\mathrm{U}\left(\mathrm{A}_{1}, \mathrm{~B}_{1}\right)>\mathrm{U}\left(\mathrm{A}_{2}, \mathrm{~B}_{2}\right)$ $\left(A_{l}, B_{I}\right)$ is preferred to $\left(A_{2}, B_{2}\right)$
- If $\mathrm{U}\left(\mathrm{A}_{1}, \mathrm{~B}_{1}\right)=\mathrm{U}\left(\mathrm{A}_{2}, \mathrm{~B}_{2}\right)$

The consumer is indifferent between
$\left(A_{l}, B_{l}\right) \&\left(A_{2}, B_{2}\right)$

KENTSTATE

Utility Functions

- $\left(\mathrm{A}_{1}, \mathrm{~B}_{1}\right)$ is preferred to $\left(\mathrm{A}_{2}, \mathrm{~B}_{2}\right)$
- Then $\mathbf{U}\left(\mathbf{A}_{1}, B_{1}\right)>\mathbf{U}\left(\mathbf{A}_{2}, B_{2}\right)$

ENTSTATE

Utility Functions

- $\left(\mathrm{A}_{1}, \mathrm{~B}_{1}\right)$ is preferred to $\left(\mathrm{A}_{2}, \mathrm{~B}_{2}\right)$
- Then $\mathbf{U}\left(\mathbf{A}_{1}, \mathbf{B}_{1}\right)>\mathbf{U}\left(\mathbf{A}_{2}, \mathbf{B}_{2}\right)$
- The consumer is indifferent between $\left(\mathrm{A}_{1}, \mathrm{~B}_{1}\right) \&\left(\mathrm{~A}_{2}, \mathrm{~B}_{2}\right)$
- Then $\mathbf{U}\left(\mathbf{A}_{1}, \mathbf{B}_{1}\right)=\mathbf{U}\left(\mathbf{A}_{2}, \mathbf{B}_{2}\right)$
${ }_{\mathrm{A}}$ Combinations of $\mathrm{A} \& \mathrm{~B}$

We represent an individual's preferences with indifference curves, plots of points representing equal utility

Properties of Indifference Curves

They Never Cross

End

