

Minimax Strategies

- Everyone who has studied a game like poker knows the importance of mixing strategies.
- With a bad hand, you often fold
- But you must bluff sometimes
$\mathrm{KENT}_{v i v} \mathrm{STATE}_{1}$ TE Minimax Strategies

Zero Sum Games

- Define a zero-sum game, in which one firm's profits are another firm's losses.
- Flipping coins or other betting games are straightforward examples of zero-sum games.
- Positive sum games such as buying a product are more common in economics.

```
KENTSTATE
```


Why Zero Sum Games?

- Zero sum games are easier to analyze
- They show us an important extension of game theory.

An Example

KENTSTATE

An Example

If B always follows strategy B_{1}, A will always follow A_{2}.
If B always follows strategy B_{2}, A will always follow A_{1}. A_{2}

KENTSTATE

A mixed strategy

Suppose A follows nple strategy A_{1} sometimes; and other times, strategy A_{2}.

A will always win \$1 and sometimes $\$ 2$ or $\$ 3$, depending on what B does. Thus, it does
better.
KENTSTATE

An Example

There is not a dominant strategy

$\|c\|$	
If \boldsymbol{B} Follows Strategy	
\boldsymbol{B}_{1}	\boldsymbol{B}_{2}
1	2
3	1

KENTSTATE

An Example

B's Response

When B follows B_{1}, it I loses \$1 part of the time and \$3 part of	If B Follows Strategy	
When it follows B^{2}	1	2
loses \$2 part of the	3	1
time and \$1 part of the time.		

An Example

KENTSTATE

A's Winnings

From Strategy $\boldsymbol{A}_{\boldsymbol{I}}$	$\mathrm{p}_{1}(1)+\left(1-\mathrm{p}_{1}\right)(2)$
From Strategy \boldsymbol{A}_{2}	$\mathrm{p}_{1}(3)+\left(1-\mathrm{p}_{1}\right)(1)$

Remember, B is following strategy $1 p_{1}$ percent of the time.
KENTSTATE

A's Winnings

Payoff from Strategy	$p_{1}=1.0$	$p_{1}=2 / 3$	$p_{1}=1 / 3$	$p_{1}=0$
\boldsymbol{A}_{1}	1	$4 / 3$	$5 / 3$	2
\boldsymbol{A}_{2}	3	$7 / 3$	$5 / 3$	1

An Example

Suppose $\mathrm{B}_{1} \Rightarrow \mathrm{p}_{1}$ percent of the time		
	If B Follows Strategy	
rcent of the time	1	2
A_{2}	3	1

[^0]
A's Winnings

	The \%of time B follows B_{1}			
Payoff from Strategy	$p_{1}=1.0$	$p_{1}=2 / 3$	$p_{1}=1 / 3$	$p_{1}=0$
A_{1}	1	$4 / 3$	$5 / 3$	2
A_{2}	3	$7 / 3$	$5 / 3$	1

If B is following the two strategies randomly, these are A's optimal decisions

A's Winnings

	The \%of time B follows B_{1}			
Payoff from Strategy	$p_{1}=1.0$	$p_{1}=2 / 3$	$p_{1}=1 / 3$	$p_{1}=0$
A_{1}	1	$4 / 3$	$5 / 3$	2
A_{2}	3	$7 / 3$	$5 / 3$	1

The Minimax Strategy
KENTSTATE

A's Winnings

That means

KENTSTATE

A's Winnings

This is the

minimax	The \%of time B follows B_{1}			
strategy	$p_{1}=1.0$	$p_{1}=2 / 3$	$p_{1}=1 / 3$	$p_{1}=0$
A_{1}	1	$4 / 3$	$5 / 3$	2
A_{2}	3	$7 / 3$	$5 / 3$	1

The Minimax Strategy

- There is an obvious analogy to playing poker. If you always fold a poor hand and raise a good hand, you will not make much money.
- You must, on occasion, bet on a poor hand and fold on a good hand.
- If not, your opponent can "read" your bets and adjust his accordingly.

The Minimax Strategy

- Any attempt to carry this further will lead us into advanced mathematics.
- This quick introduction illustrates what can be one to set up strategy problems in a game theoretic framework.

[^0]: KENTSTATE

