

The Slutsky Equation
These effects are often summarized $\overline{\Delta P} \stackrel{\substack{\text { in the Slutsky } \\ \text { equation }}}{\approx}(\overline{\Delta P})_{U=U_{o}}-Q\left(\frac{\Delta Q}{\Delta I}\right)$

KENTSTATE

The Slutsky Equation
$\frac{\Delta Q}{\Delta P} \approx\left(\frac{\Delta Q}{\Delta P}\right)_{U=U_{o}}-Q\left(\frac{\Delta Q}{\Delta I}\right)$

KENTSTATE

The Slutsky Equation

 $\frac{\Delta Q}{\Delta P} \approx\left(\frac{\Delta Q}{\Delta P}\right)_{U=U_{0}}-Q\left(\frac{\Delta Q}{\Delta I}\right)$The income effect is the change in demand from the effective increase in income

A Caution

- The version of the Slutsky equation we use is only an approximation.

A Caution

- The version of the Slutsky equation we use is only an approximation.
- We are assuming discrete changes in price and income; the correct equation assumes infinitesimal changes.

KENSTATE

Why spend time on this topic?

- Giffin Goods
- The Demand for Leisure
kENTTATE

Why spend time on this topic?

- Giffin Goods
- The Demand for Leisure
- Different Slopes

Why spend time on this topic?

- Giffin Goods
- The Demand for Leisure
- Different Slopes
- Changes in the price of one brand versus changes in the prices of all brands.

KENTSTATE

Why spend time on this topic?

- Giffin Goods
- The Demand for Leisure
- Different Slopes
- Changes in the price of one brand versus changes in the prices of all brands.
- Heavily purchased goods versus lightly purchased goods.

KENTSTATE

Restating The Slutsky Equation

$$
\frac{\Delta Q}{\Delta P} \approx\left(\frac{\Delta Q}{\Delta P}\right)_{U=U_{0}}-Q\left(\frac{\Delta Q}{\Delta I}\right)
$$

KENTSTATE

The Marshallian Demand Curve

KENTSTATE

The Hicksian Demand Curve

Sir John Hicks

KENTSTATE

SLutsky Equation

Sir John Hicks

The Hicksian Demand Curve is the right one to use for consumer surplus calculations, but we generally use the Marshallian one

$$
\begin{gathered}
\text { A Demonstration } \\
\frac{\Delta Q}{\Delta P} \approx\left(\frac{\Delta Q}{\Delta P}\right)_{U=U_{o}}-Q\left(\frac{\Delta Q}{\Delta I}\right) \\
\left(\frac{\Delta Q}{\Delta P}\right)_{U=U_{o}}=\frac{\Delta Q}{\Delta P}+Q\left(\frac{\Delta Q}{\Delta I}\right)
\end{gathered}
$$

The Two Elasticities

The Elasticity Relationship
$\left(\frac{\Delta Q}{\Delta P}\right)_{U=U_{0}} \frac{P}{Q}=\frac{\Delta Q}{\Delta P} \frac{P}{Q}+Q\left(\frac{\Delta Q}{\Delta I}\right) \frac{P}{Q}$

$$
\eta_{H}^{P}=\eta_{M}^{P}+Q\left(\frac{\Delta Q}{\Delta I}\right) \frac{P}{Q}
$$

The Missing Terms
$\left(\frac{\Delta Q}{\Delta P}\right)_{U=U_{o}} \frac{P}{Q}=\frac{\Delta Q}{\Delta P} \frac{P}{Q}+Q\left(\frac{\Delta Q}{\Delta I}\right) \frac{P}{Q}$

$$
\eta_{H}^{P}=\eta_{M}^{p}+\frac{Q P\left(\frac{\Delta Q}{I}\right) \frac{I}{Q}}{}
$$

$$
\eta_{H}^{P}=\eta_{M}^{P}+\omega \eta
$$

KENTSTATE

More Manipulation

$$
\left(\frac{\Delta Q}{\Delta P}\right)_{U=U_{0}} \frac{P}{Q}=\frac{\Delta Q}{\Delta P} \frac{P}{Q}+Q\left(\frac{\Delta Q}{\Delta I}\right) \frac{P}{Q}
$$

$$
\eta_{H}^{p}=\eta_{M}^{p}+\frac{Q P}{I} \frac{\Delta Q}{\Delta I} \frac{I}{Q}
$$

$$
\eta_{H}^{P}=\eta_{M}^{P}+\omega \eta^{I}
$$

$$
\eta_{H}^{P}=\eta_{M}^{P}+\omega \eta^{I}
$$

Unless ω is pretty large, the difference is small

