

The Slutsky Equation These effects are often summarized in the Slutsky equation $\left(\frac{\Delta P}{\Delta P}\right)_{U=U_{a}}$ \approx 1 ΔP KENT STATE SLutsky Equation

Restating The Slutsky Equation $\frac{\Delta Q}{\Delta P} \approx \left(\frac{\Delta Q}{\Delta P}\right)_{U=U_o} - Q\left(\frac{\Delta Q}{\Delta I}\right)$ EVEKVE Equation

SLutsky Equation

The Final Relation $\eta_{H}^{P} = \eta_{M}^{P} + \omega \eta^{I}$ SLutsky Equation KENT STATE

	End ©2006 Charles W. Upton
KENT STATE	SLutsky Equation