Solving the Problems

$$
\begin{gathered}
Q=50-P \\
T C=5 Q
\end{gathered}
$$

KENTSTATE

The Answers

- Suppose
$Q=50-P$ $T C=5 Q$

Q	22.5
P	$\$ 27.50$
Revenue	$\$ 618.75$
Cost	$\$ 112.50$
Profit	$\$ 506.25$

Solving the Problems

Solving Problem I

- Find the value of Q at which $\mathrm{MR}=\mathrm{MC}$
- Find MC
- Find MR

The Detailed Solution

- Find the value of Q at which $\mathrm{MR}=\mathrm{MC}$

Solving Problem I
• Find the value of Q at which $\mathrm{MR}=\mathrm{MC}$
• Find MC
• Find MR
KENTSTATE
Soling the Problems

Marginal Cost If $T C=5 Q, M C=5$	

Marginal Revenue

- Find the value of Q at which $\mathrm{MR}=\mathrm{MC}$
- Find MC
- Find MR

Solve for the inverse demand function Substitute for P into the revenue function

KENTSTATE

The Inverse Demand Function

$$
\begin{aligned}
& Q=50-P \\
& P=50-Q
\end{aligned}
$$

The Revenue Function

$$
\begin{gathered}
Q=50-P \\
P=50-Q \\
R=P Q=(50-Q) Q
\end{gathered}
$$

$$
R=50 Q-Q^{2}
$$

Finding Marginal Revenue

- The derivative of

$$
a x^{2}+b x+c
$$

is

$$
2 a x+b
$$

Finding Marginal Revenue

- The derivative of

$$
a x^{2}+b x+c
$$

is
$2 a x+b$
$50 Q-Q^{2}$

KENTSTATE

- $\mathrm{MC}=5$
- $M R=50-2 \mathrm{Q}$

$$
50-2 Q=5
$$

Finding P

- Since
$Q=50-P$
$P=27.5$

Finding P		
- Since$\begin{gathered} Q=50-P \\ P=27.5 \end{gathered}$	Q	22.5
	P	\$27.50
	Revenue	\$618.75
	Cost	\$112.50
	Profit	\$506.25
KENTSTATE	the Probems	

Find $M R=M C$

- $\mathrm{MC}=5$
- $\mathrm{MR}=50-2 \mathrm{Q}$

$$
\begin{gathered}
50-2 Q=5 \\
Q=22.5
\end{gathered}
$$

KENTSTATE

Revenue		
Revenue $=P Q$	Q	22.5
	P	\$27.50
	Revenue	\$618.75
	Cost	\$112.50
	Profit	\$506.25
KENTSTATE	ne Problems	

Cost		
$T C=5 Q$	Q	22.5
	P	\$27.50
	Revenue	\$618.75
	Cost	\$112.50
	Profit	\$506.25
KENTSTATE	the Pobems	

Profit		
$\begin{gathered} \pi=\text { Revenue }- \\ \text { Cost } \end{gathered}$	Q	22.5
	P	\$27.50
	Revenue	\$618.75
	Cost	\$112.50
	Profit	\$506.25
KENTSTATE Sowne		

Problem II

Quantity	Price	Cost
0		6
1	15	11
2	13	16
3	11	21
4	8	26
5	7	31
6	6	36
KENTSTA7E	Solving 5ie Problems	41

The Answers

Q	3
P	11
Revenue	33
Cost	21
Profit	12

KENTSTATE
Solving the Problems

A spreadsheet approach

Q	P	Revenue $=P Q$	Marginal Revenue	Cost	Marginal Cost	Profit
0						
1						
2						
3						
4						
5						
6						
7						

> KENTSTATE

Solving the Problems

| A spreadsheet approach | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q P Revenue
 FPQ Marginal
 Revenue Cost Marginal
 Cost Profit
 0 6
 1 15 11
 2 13 16
 3 11 21
 4 8 26
 5 7 31
 6 6 36
 7 5 41 | | | | | |

A spreadsheet approach

Q	Revenue $=\mathrm{PQ}$	Marginal Revenue	Cost	Marginal Cost	Profit	
0		0		6		
1	15	15		11		
2	13	26		16		
3	11	33		21		
4	8	32		26		
5	7	35		31		
6	6	36		36		
7	5	35		41		

KENT STATE
Solving the Problems

A spreadsheet approach

Q	Revenue =PQ	Marginal Revenue	Cost	Marginal Cost	Profit	
0		0		6		
1	15	15	15	11	5	
2	13	26	11	16	5	
3	11	33	7	21	5	
4	8	32	-1	26	5	
5	7	35	3	31	5	
6	6	36	1	36	5	
7	5	35	-1	41	5	

[^0]Solving the Problems

A spreadsheet approach

Q	P	Revenue =PQ	Marginal Revenue	Cost	Marginal Cost	Profit
0		0		6		
1	15	15	15	11	5	
2	13	26	11	16	5	
3	11	33	7	21	5	
4	8	32	-1	26	5	
5	7	35	3	31	5	
6	6	36	1	36	5	
7	5	35	-1	41	5	

A spreadsheet approach

Q	P	Revenue $=\mathrm{PQ}$	Marginal Revenue	Cost	Marginal Cost	Profit
0		0		6		$\$ 6$
1	15	15	15	11	5	$\$ 4$
2	13	26	11	16	5	$\$ 10$
3	11	33	7	21	5	$\$ 12$
4	8	32	-1	26	5	$\$ 6$
5	7	35	3	31	5	$\$ 4$
6	6	36	1	36	5	$\$ 0$
7	5	35	-1	41	5	$\$ 6$

[^1]
End

[^0]: KENT STATE

[^1]: KENT STATE

