

Assumptions

- Two firms A, and B produce widgets

KENTSTATE

Assumptions

- Two firms A, and B produce widgets
- The industry demand function is D

Assumptions

- Two firms A, and B produce widgets
- The industry demand function is D
- Firm A produces q_{A}; firm B produces q_{B}
- Firm A takes its demand function as D - q_{B}

An important assumption, the heart of the Cournot model. function is D

- Firm A produces q_{A}; firm B produces q_{B}
- Firm A takes its demand function as $D-q_{B}$

Assumptions

- Two firms A, and B produce widgets
- The industry demand

KENTSTATE \qquad

Assumptions

- Two firms A, and B produce widgets
- The industry demand function is D
- Firm A produces q_{A}; firm B produces q_{B}

KENTSTATE
Q

Symmetry

- Just as Firm A is choosing q_{A} to maximize profits, so too is Firm B choosing q_{B} to maximize profits.
- If B changes its output, A will react by changing its output.

Symmetry

- Just as Firm A is choosing q_{A} to maximize profits, so too is Firm B choosing q_{B} to maximize profits.

KENTSTATE

A Reaction Function

- We do the mathematical approach first and then the graphical approach.

A Reaction Function

- The industry demand function

$$
Q=100-2 p
$$

A Reaction Function

- The industry demand function

$$
\mathrm{Q}=100-2 \mathrm{p}
$$

- The inverse demand function is

$$
P=50-(1 / 2) Q
$$

KENTSTATE

A Reaction Function

- The industry demand function

$$
\mathrm{Q}=100-2 \mathrm{p}
$$

- The inverse demand function is

$$
\mathrm{P}=50-(1 / 2) \mathrm{Q}
$$

- A's demand function is then

$$
P=50-(1 / 2)\left(q_{A}+q_{B}\right)
$$

KENTSTATE

A Reaction Function

A's demand function is then

A Reaction Function

$\pi=\left[50-(1 / 2)\left(q_{A}+q_{B}\right)\right] q_{A}-5 q_{A}$

- The firm's profits are

$$
\pi=\left[50-(1 / 2)\left(q_{A}+q_{B}\right)\right] q_{A}-5 q_{A}
$$

A Reaction Function

A's demand function is then

$$
\mathbf{P}=50-(1 / 2)\left(\mathrm{q}_{\mathrm{A}}+\mathrm{q}_{\mathrm{B}}\right)
$$

- The firm's profits are

$$
\pi=P q_{A}-5 q_{A}
$$

$$
\mathbf{P}=50-(1 / 2)\left(\mathrm{q}_{\mathrm{A}}+\mathrm{q}_{\mathrm{B}}\right)
$$

A Reaction Function

$$
\begin{gathered}
\pi=\left[50-(1 / 2)\left(q_{A}+q_{B}\right)\right] q_{A}-5 q_{A} \\
\pi=50 q_{A}-(1 / 2) q_{A}{ }^{2}-(1 / 2) q_{B} q_{A}- \\
5 q_{A}
\end{gathered}
$$

A Reaction Function

$\pi=\left[50-(1 / 2)\left(\mathrm{q}_{\mathrm{A}}+\mathrm{q}_{\mathrm{B}}\right)\right] \mathrm{q}_{\mathrm{A}}-5 \mathrm{q}_{\mathrm{A}}$
$\pi=50 \mathrm{q}_{\mathrm{A}}-(1 / 2) \mathrm{q}_{\mathrm{A}}{ }^{2}-(1 / 2) \mathrm{q}_{\mathrm{B}} \mathrm{q}_{\mathrm{A}}-5 \mathrm{q}_{\mathrm{A}}$ $\pi=45 q_{A}-(1 / 2) q_{A}{ }^{2}-(1 / 2) q_{B} q_{A}$

A Reaction Function
$\pi=45 q_{a}-\frac{1}{2} q_{a}^{2}-\frac{1}{2} q_{a} q_{b}$

A Reaction Function

$$
\begin{gathered}
\pi=45 q_{a}-\frac{1}{2} q_{a}^{2}-\frac{1}{2} q_{a} q_{b} \\
\frac{d \pi}{d q_{a}}=45-q_{a}-\frac{1}{2} q_{b}
\end{gathered}
$$

A Reaction Function

$$
\frac{d \pi}{d q_{a}}=45-q_{a}-\frac{1}{2} q_{b}=0
$$

$$
q_{a}=45-\frac{1}{2} q_{b}
$$

Solving for A's Output	
$\downarrow_{\mathrm{q}_{A}=45-(1 / 2)\left[45-(1 / 2) \mathrm{q}_{A}\right]}^{\mathrm{q}_{\mathrm{A}}=45-(1 / 2) \mathrm{q}_{\mathrm{B}}} \mathrm{q}_{\mathrm{B}}=45-(1 / 2) \mathrm{q}_{\mathrm{A}}$	
KENTSTATE	Trocoumat Mosel

Solving for A's Output

$$
\begin{gathered}
q_{A}=45-(1 / 2)\left[45-(1 / 2) q_{A}\right] \\
q_{A}=22.5+(1 / 4) q_{A} \\
(3 / 4) q_{A}=22.5
\end{gathered}
$$

Solving for A's Output

$$
\begin{gathered}
q_{A}=45-(1 / 2)\left[45-(1 / 2) q_{A}\right] \\
q_{A}=22.5+(1 / 4) q_{A} \\
(3 / 4) q_{A}=22.5 \\
q_{A}=(4 / 3) 22.5
\end{gathered}
$$

KENTSTATE

Solving for A's Output

$$
\begin{gathered}
\mathrm{q}_{\mathrm{A}}=45-(1 / 2)\left[45-(1 / 2) \mathrm{q}_{\mathrm{A}}\right] \\
\mathrm{q}_{\mathrm{A}}=22.5+(1 / 4) \mathrm{q}_{\mathrm{A}} \\
(3 / 4) \mathrm{q}_{\mathrm{A}}=22.5 \\
\mathrm{q}_{\mathrm{A}}=(4 / 3) 22.5 \\
\boldsymbol{q}_{A}=30 \\
\boldsymbol{q}_{\boldsymbol{B}}=30 \\
\text { The Cournot Model }
\end{gathered}
$$

A Graphical Approach

$$
q_{A}=45-(1 / 2) q_{B}
$$

- We want to use the reaction function to come to a graphical solution,

A Graphical Approach

$$
q_{A}=45-(1 / 2) q_{B}
$$

- When B produces nothing A should react by producing the monopoly output (45).

KENTSTATE

A Graphical Approach

$$
\mathrm{q}_{\mathrm{A}}=45-(1 / 2) \mathrm{q}_{\mathrm{B}}
$$

- When B produces nothing A should react by producing the monopoly output (45).
- When B produces the output of the competitive industry (90), A should react by producing nothing.
- Similar rules apply for B's reactions.

KENTSTATE

$$
\begin{aligned}
& \text { A Graphical Approach } \\
& \qquad \boldsymbol{q}_{A}=45-(1 / 2) q_{B}
\end{aligned}
$$

- When B produces nothing A should react by producing the monopoly output (45).
- When B produces the output of the competitive industry (90), A should react by producing nothing.

Equilibrium

The Basic Steps

- Plot the reaction functions
- If B produces nothing, A behaves like a monopoly
- If B produces competitive output, A produces nothing
- Solve for their intersection

KENTSTATE

