The Market for Lemons

- Every year n cars are available for sale, of which p turn out to be "lemons"

KENTSTATE

The Market for Lemons

- Every year n cars are available for sale, of which p turn out to be "lemons"
- Buyers would be willing to pay B_{G} for a good car and B_{L} for a lemon
- Sellers are willing to sell cars at S_{G} and S_{L}

The Market for Lemons

- Every year N cars are available for sale, of which p turn out to be "lemons"
- Buyers would be willing to pay B_{G} for a good car and B_{L} for a lemon
- Sellers are willing to sell cars at S_{G} and S_{L}

$$
\begin{array}{ll}
\boldsymbol{S}_{L}<\boldsymbol{S}_{G} & \boldsymbol{B}_{L}<\boldsymbol{B}_{G} \\
\boldsymbol{B}_{G}>\boldsymbol{S}_{G} & \boldsymbol{B}_{L}>\boldsymbol{S}_{L}
\end{array}
$$

The Market for Lemons

Buyers can tell the difference

A numerical example

Variable	Value
S_{G}	$\$ 12,000$
$\mathrm{~S}_{\mathrm{L}}$	$\$ 6,000$
$\mathrm{~B}_{\mathrm{G}}$	$\$ 14,000$
$\mathrm{~B}_{\mathrm{L}}$	$\$ 8,000$
P	30%

KENTSTATE
The Market for Lemons

If Buyers cannot

 tell the difference$$
P=p B_{L}+(1-p) B_{G}
$$

- If buyers can distinguish
$P_{G}=\$ 14,000$
$P_{L}=\$ 8,000$

A numerical example

Variable	Value
S_{G}	$\$ 12,000$
$\mathrm{~S}_{\mathrm{L}}$	$\$ 6,000$
$\mathrm{~B}_{\mathrm{G}}$	$\$ 14,000$
$\mathrm{~B}_{\mathrm{L}}$	$\mathbf{8 8 , 0 0 0}$
P	$\mathbf{3 0 \%}$

- If buyers cannot distinguish
$P=p B_{L}+(1-p) B_{G}$
$P=(0.3)(\$ 8,000)+$
(0.7)(\$14,000)
$=$
\$12,200

Different Numbers

Var ${ }^{2}$ ble	Value
S_{G}	$\$ 12,000$
$\mathrm{~S}_{\mathrm{L}}$	$\$ 6,000$
$\mathrm{~B}_{\mathrm{G}}$	$\$ 14,000$
$\mathrm{~B}_{\mathrm{L}}$	8,000
P	$\mathbf{4 0 \%}$

- If buyers cannot distinguish
$P=p B_{L}+(1-p) B_{G}$
$P=(0.4)(\$ 8,000)+$
(0.6)(\$14,000)
=
$\$ 11,600$

Different Numbers

Variable	Value
S_{G}	$\mathbf{\$ 1 2 , 0 0 0}$
S_{L}	$\$ 6,000$
$\mathrm{~B}_{\mathrm{G}}$	$\mathbf{\$ 1 4 , 0 0 0}$
B_{L}	$\mathbf{8 8 , 0 0 0}$
P	$\mathbf{4 0 \%}$

- If buyers cannot distinguish
$P=p B_{L}+(1-p) B_{G}$
$P=(0.4)(\$ 8,000)+$ (0.6)(\$14,000)
=
$\$ 11,600$

The Tilting Point

The Tilting Point		
		$P=p B_{L}+(1-p) B_{G}$
Variable	Value	
S_{G}	\$12,000	$\begin{gathered} \$ 12,000= \\ p(\$ 8,000) \\ +(1-p)(\$ 14,000) \end{gathered}$
S_{L}	\$6,000	
B_{G}	\$14,000	
B_{L}	\$8,000	
P		
KENTSTATE		Lemons

The Tilting Point

$$
P=p B_{L}+(1-p) B_{G}
$$

\$12,000 =
p(\$8,000)
$+(1-p)(\$ 14,000)$

End

