

Theory of Choice
• Basic Model of Choice
KENPTSTE

The Basic Model

- Suppose an individual is asked to choose among the following
- Some Simple Illustrations

KENTSTATE

Theory of Choice

- Basic Model of Choice

KENTSTATE

The Basic Model

- Suppose an individual is asked to choose among the following

Basket "A"	Basket "B"	Basket "C"
3 Apples 2 Bananas	2 Apples 3 Bananas	1 Apple 4 Bananas

\square

The Basic Model

- Suppose an individual is asked to choose among the following

- We make some basic assumptions about how the choice will be made

Assumption of Completeness

- I prefer Basket A to Basket B

KENTSTATE

Assumption of Completeness

- I prefer Basket A to Basket B
- I prefer Basket B to Basket A
- I am indifferent. The two are equally attractive.

KENTSTATE

Assumption of Transitivity

- If A is preferred to B and
- B is preferred to C
- Then A is preferred to C

Assumption of Completeness

- I prefer Basket A to Basket B
- I prefer Basket B to Basket A

KENTSTATE

Assumption of Completeness

- I prefer Basket A to Basket B
- I prefer Basket B to Basket A
- I am indifferent. The two are equally attractive.
- I don't know
- Neither

KENTSTATE \quad The Theory of Choice

More is Better than Less

- If Basket A contains more than Basket B, then A is preferred to B

More is Better than Less

- If Basket A contains more than Basket B, then A is preferred to B
- Basket A: 3 Apples, 2 Bananas
- Basket B: 2 Apples, 2 Bananas

KENTSTATE
The Theory of Choice

Utility Functions

- The assumptions mean that individuals have a utility function $U(A, B)$

KENTSTATE

Utility Functions

- The assumptions mean that individuals have a utility function $U(A, B)$
- The function gives the "utility" for different combinations of (say) apples and bananas
- If $\mathrm{U}\left(\mathrm{A}_{1}, \mathrm{~B}_{1}\right)>\mathrm{U}\left(\mathrm{A}_{2}, \mathrm{~B}_{2}\right)$ (A_{l}, B_{l}) is preferred to (A_{2}, B_{2})

Utility Functions

- The assumptions mean that individuals have a utility function $U(A, B)$
- The function gives the "utility" for different combinations of (say) apples and bananas

KENTSTATE

An Example

$\mathrm{U}=\mathrm{AB}$

Utility from Different Baskets			
Choice	Apples	Bananas	Units of Utility
\boldsymbol{A}	$\mathbf{4}$	$\mathbf{1}$	$\mathbf{4}$
B	2	2	4
C	3	3	9
D	3.5	4	14

The Theory of Choice

An Example

$\mathrm{U}=\mathrm{AB}$

Utility from Different Baskets			
Choice	Apples	Bananas	Units of Utility
A	4	1	4
B	2	2	4
C	3	3	9
D	3.5	4	14

Modifying the Example

$\boldsymbol{U = (A B) ^ { \mathbf { 2 } }}$			
Utility from Different Baskets			
Choice	Apples	Bananas	

$D>C>B=A$

Ordinality

- $U($ Basket $A)=10$
- $U($ Basket B) $=7$
$\boldsymbol{A}>\boldsymbol{B}$

Period!

