Two Simple Extensions

$$
\begin{gathered}
Q=a-b p-c p^{2} \\
Q=a p^{-b} \\
Q=Q(p)
\end{gathered}
$$

KENTSTATE

Other factors affecting demand

- We have used a simple demand function

$$
Q=a-b p
$$

Other factors affecting demand

- We have used a simple demand function

$$
Q=a-b p
$$

- But there can be other factors as well

$$
Q=a-b p \pm c p_{o g}
$$

kENTSTATE

Other factors affecting demand

- We have used a simple demand function

$$
Q=a-b p
$$

- But there can be other factors as well

$$
Q=a-b p \pm c p_{o g}
$$

- The sign on the coefficient c can be positive or negative depending on whether we have a complement or substitute.
KENTSTATE

Complements

- We might think of the demand for left shoes to be

$$
Q_{L}=a-b p_{L}-c p_{R}
$$

- We write the coefficient on the "c" term as negative to indicate that we are talking about a complement.

Complements

- If two goods are complements, the demand function is

$$
Q=a-b p-c p_{o g}
$$

Shoes

- We might think of the demand for left shoes to be

$$
Q_{L}=a-b p_{L}-c p_{R}
$$

- We can go further and write it as

$$
\begin{aligned}
& Q_{L}=a-b p_{L}-b p_{R} \\
& \quad \text { Or } \\
& Q_{L}=a-b\left(p_{L}+p_{R}\right)
\end{aligned}
$$

KENTSTATE

Substitutes

- Our demand function is

$$
Q=a-b p+c p_{o g}
$$

- If we think of Coke and Pepsi

$$
Q_{\text {coke }}=a-b p_{\text {coke }}+c p_{\text {pepsi }}
$$

KENTSTATE

Shoes

- Our demand function is

$$
Q=a-b p+c p_{o g}
$$

KENTSTATE

Substitutes

- Our demand function is

$$
Q=a-b p+c p_{o g}
$$

- If we think of Coke and Pepsi

$$
Q_{\text {coke }}=a-b p_{\text {coke }}+c p_{\text {pepsi }}
$$

- This demand function is linear. That is, there is a straight line relationship between the quantity demanded and either price.

KENTSTATE

Coke and Pepsi

- Given our When $p_{\text {coke }}>p_{\text {pepsi }}$ analysis of perfect $Q_{\text {coke }}=0$ substitutes, the

$$
\text { When } \boldsymbol{p}_{\text {coke }}=\boldsymbol{p}_{\text {pepsi }}
$$

right way to write $Q_{\text {coke }}=(1 / 2)\left(a-b p_{\text {coke }}\right)$, the demand function is

Coke and Pepsi

- Given our When $p_{\text {coke }}>p_{p \text { pepsi }}$
analysis of perfect
substitutes, the
right way to write the demand

$$
Q_{\text {coke }}=0
$$

When $\boldsymbol{p}_{\text {coke }}=\boldsymbol{p}_{\text {pepsi }}$
$Q_{\text {coke }}=(1 / 2)\left(a-b p_{\text {coke }}\right)$
When $p_{\text {cokee }}<p_{\text {pepsi }}$ function is

KENTSTATE

Non-linear demand functions

- This last example suggests an important point. Even when demand functions are represented by an equation, it need not be a straight line.

$$
\begin{gathered}
Q=a-b p-c p^{2} \\
Q=a p^{-b} \\
Q=Q(p)
\end{gathered}
$$

KENTSTATE

Income

- Return to our demand for shoes

$$
Q_{L}=a-b\left(p_{L}+p_{R}\right)
$$

- We can include income as well

$$
Q_{L}=a-b\left(p_{L}+p_{R}\right)+c Y
$$

Non-linear demand functions

- Even when demand functions are represented by an equation, it need not be a straight line.

KENTSTATE

Income

- Return to our demand for shoes

$$
Q_{L}=a-b\left(p_{L}+p_{R}\right)
$$

KENTSTATE

And More

- Return to our demand for shoes

$$
Q_{L}=a-b\left(p_{L}+p_{R}\right)
$$

- We can include income as well

$$
Q_{L}=a-b\left(p_{L}+p_{R}\right)+c Y
$$

- And population

$$
Q_{L}=[N]\left[a-b\left(p_{L}+p_{R}\right)+c Y\right]
$$

Breathe Easy

- We generally work with simple straight line demand functions.
- But there is a lot more we can do.

End
© 2004 Charles W. Upton

