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ABSTRACT
Contact tracers assist in containing the spread of highly infectious
diseases such as COVID-19 by engaging community members who
receive a positive test result in order to identify close contacts. Many
contact tracers rely on community member’s recall for those identi-
fications, and face limitations such as unreliable memory. To inves-
tigate how technology can alleviate this challenge, we developed
a visualization tool using de-identified location data sensed from
campusWiFi and provided it to contact tracers during mock contact
tracing calls. While the visualization allowed contact tracers to find
and address inconsistencies due to gaps in community member’s
memory, it also introduced inconsistencies such as false-positive
and false-negative reports due to imperfect data, and information
sharing hesitancy. We suggest design implications for technologies
that can better highlight and inform contact tracers of potential
areas of inconsistencies, and further present discussion on using
imperfect data in decision making.

CCS CONCEPTS
•Human-centered computing→ Empirical studies in HCI;
Empirical studies in ubiquitous and mobile computing; Field studies.
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1 INTRODUCTION
Reducing the epidemic peak of infectious diseases such as COVID-
19, or “flattening the curve," is essential to ensure that hospitals
are not overwhelmed with patients, and that frontline workers and
overall public health are not put in jeopardy [23, 36]. According to
the Centers for Disease Control and Prevention (CDC), contact trac-
ing is key to slowing the spread of infectious diseases [5]. Contact
tracing is an example of a non-pharmaceutical intervention (NPI),
and a vital first response to defend against a pandemic [36]. The
benefit of NPIs is that they are the only set of pandemic counter-
measures that are readily available at all times and in all countries,
therefore making them the most accessible means of containment.
These measures have proven to be effective both at the start and the
during a pandemic outbreak [36]. Because new human pathogen
species are discovered at a rate of 3 per year [33], contact tracing
will continue to be required all over the world.

Contact tracing works to help slow the spread of infection by
identifying and notifying community members of potential expo-
sures and providing further information about quarantining and
local resources [7]. However, unlike other infectious diseases such
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as Ebola and tuberculosis, COVID-19’s unprecedented infection
rate has presented the unique challenge of outpacing local public
health systems’ abilities to quickly identify and contact all who
have been exposed. Another complicating factor of containment is
due to 85% of COVID-19 transmission being from asymptomatic
carriers [44]. This means that people may not be aware that they
are positive for the virus due to not having symptoms, and are ex-
posing others. This unique combination of factors require contact
tracing efforts and resources to operate at peak efficiency [7].

The effectiveness of contact tracing depends on many factors,
such as timeliness of case identification and contact notification,
contact tracers’ expertise, and self-reporting [15]. Multiple efforts
have been undertaken to train contact tracers. For example, govern-
ment health officials in California have trained over 200,000 contact
tracers [32], and more than a million people have enrolled in an on-
line contact tracing Coursera course offered by Johns Hopkins [4].
Manual contact tracing—when health workers directly communi-
cate with an individual who has tested positive (i.e., a positive case)
to determine each of their close contact contacts—relies on accurate
and reliable identification of potential exposures [15]. However, be-
cause human recall can be unreliable, often contact tracers receive
incomplete or incorrect information from the positive case [15, 55].

Digital support for contact tracing automatically monitors peo-
ple’s location and proximal interactions, handing off to technology
the burden of determining a person’s (or more specifically their
on-person devices) history of proximity to other people. Many au-
thorities and governing bodies, such as Harvard University and
the Australian government, have adopted digital solutions to track
potential close contacts of users [2, 6, 9, 35]. Many of these digital
applications are intended to accelerate detection and notification of
potential exposures [51]. However, little is known about how digital
options can be integrated into the manual contact tracing process
and support close contact identification. It is well documented that
both manual and digital contact tracing data imperfections are
present, however, more studies need to be conducted on how to suc-
cessfully integrate digital tools into the process and how to address
the challenge [15, 51].

To understand how digital contact tracing can effectively support
the manual contact tracing process, we developed a visualization
tool using community member’s location information, gathered
fromUniversityWiFi network.We situated our study in a university
setting because they are dense population hubs for the community
and therefore critical epicenters to control disease outbreak [14].
Furthermore, data collection via WiFi network was chosen because
of the robust WiFi infrastructure employed on large University
campuses, which can lead to high adoption rates without requiring
extra software installation for each individual.

Our paper makes the following contributions:

• We present a novel visualization tool for manual contact
tracing using WiFi location data. By employing the tool dur-
ing mock contact tracing calls between 5 contact tracers and
14 community members, we show the way the visualization
supports their conversation, and tensions its introduction
can create.

• We report the finding of inconsistencies that are introduced
into manual contact tracing as a result of using the visual-
ization tool. We show how contact tracers and community
members resolved the inconsistencies by engaging in collab-
orative sensemaking of the data.

• We present and discuss concerns within the community
regarding privacy of using the tool visualizing WiFi location
data for the purpose of contact tracing.

• We demonstrate the existence of socio-technical gaps within
contact tracing technologies and suggest design implications
to alleviate those gaps.

2 BACKGROUND: CONTACT TRACING FOR
COVID-19

Contact tracing is cited by the CDC as a key component of control-
ling the transmission of infectious diseases such as COVID-19 [7].
Contact tracing involves the engagement of an infected person, or
"positive case," by a public health worker. During this interaction,
the public health worker, or "contact tracer," facilitates a discussion
about their symptom timelines, test dates, and contacts [7]. In this
section, we provide background of manual and digital contact trac-
ing, as this study investigates how digital tools can be designed to
better support the manual contact tracing process.

2.1 Manual Contact Tracing
In the context of pandemic response, a "contact" is anyone who
came into physical contact with a positive case during their infec-
tious period. More specifically, the CDC defines a "close contact" as
anyone who has been within 6 feet (2 meters) of an infected person
during their infectious period for 15 minutes or more over a 24
hours period [5]. In manual contact tracing, all contact is made via
phone call, and most states in the U.S. currently adhere to manual
contact tracing [32]. When the contact tracer calls the positive case,
they ask a series of questions in order to gather information on in-
fectious periods, events attended, and close contacts of the positive
case. When the list of close contacts has been made, the contact
tracer then calls each close contact to notify them of exposure and
provide self-isolation timelines and information.

Because manual contact tracing relies entirely on the positive
case’s ability to provide information, imperfect recall presents a
significant challenge to the process. [15]. There has been research
done on hypothetical strategies to address the recall problem of
manual contact tracing using fully digital contact tracing strate-
gies [55], however, there needs to be more investigation of how
digital strategies can be integrated to support manual contact trac-
ing directly [51]. Our study sheds light on how the data collected
by digital systems can be visualized and discussed during contact
tracing calls can alleviate the recall problem that exists.

2.2 Technology Support for Contact Tracing
There are many ways that technology can be used to support con-
tact tracing. Digital solutions can be used to create a list of potential
close contacts, alert people of exposure, or both. For both function-
alities, the digital system must be able to determine the proximity
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between two people. Below we will discuss two different ways tech-
nology can determine proximity between two people, and present
characteristics of each that impact efficacy and adoption rates.

2.2.1 Models to Determine Proximity for Contact Tracing. Prox-
imity is defined as "the state of being near in space or time [8]."
In the context of contact tracing, closer proximity to an infected
person means higher risk of exposure [1]. There are multiple ways
that technology can use to determine one’s proximity to another.
For contact tracing specifically, we explore two different models
to determine proximity of community members: 1) decentralized
device-based, and 2) centralized infrastructure-based.

Device-based proximity determination is based on the physical
distance between two devices, and decentralized refers to the data
being stored locally on the device [31]. This model utilizes radio
communication capabilities such as Bluetooth to detect the strength
of a signal coming from another device [55]. The strength of the
signal is proportional to the distance between the devices at a
particular time, and therefore determines proximity of the devices
to each other. This interaction is called a "handshake," and this
method is generally accurate and can be used to quickly alert user
of potential exposure. In addition, because decentralized proximity
determination is local to the device, it gives the user more control
over the data and system use [28].

The second model explored to determine proximity is central-
ized infrastructure-based. Instead of tracking the distance between
devices, infrastructure-based proximity determination tracks a de-
vice’s location through a network, such as community WiFi [46],
and the data is uploaded and stored in a centralized database. For
example, when a mobile device comes into contact with a network
via access point or other sensor, the devices’ location data within
the network is logged. If other users’ devices are also interacting
with the same network and sensor at the same time, the system can
report that these two devices, and therefore their users, are in the
same space at the same time. In this work, we refer to these users
who are sharing space and time as “co-locators.”

Another way centralized proximity determination can be used
is by utilizing existing infrastructure such as C.C.T.V footage and
credit card usage information, as South Korea is doing [25]. While
users have less control over their data in centralized systems, they
assess transmission risk more accurately [15]. Centralized proxim-
ity determination via WiFi has also been used in past studies to
reconstruct the locations visited by people on campus [20, 50, 53].

2.2.2 Factors Influencing Adoption of Contact Tracing Technology.
In order to be effective in slowing infection rates of COVID-19,
contact tracing applications require an adoption rate of at least
60% [31]. The adoption of contact tracing technology depends on
several factors including privacy and security issues, benefits to
users and their community, and accuracy [11, 26, 42, 51]. We review
each factor below as they can inform potential benefits and chal-
lenges of introducing the centralized infrastructure-based digital
contact tracing in manual contact tracing process.

Privacy: Decentralized and centralized approaches to logging
user’s proximity data have differing levels of data privacy and con-
trol [22]. Systems that store user proximity data via decentralized
method typically preserve the privacy of the user, as the informa-
tion is stored locally on their device [45]. The decentralized NOVID

application is marketed for being designed explicitly around user
privacy [21], as was Singapore’s national contact tracing app Trace-
Together, which uses Bluetooth to detect other devices [3].

Conversely, centralized systems log the user data in a network
database. These systems, such as Tracefi and South Korea’s contro-
versial use of C.C.T.V. footage and credit card information [25], have
raised privacy concerns around who has access to the data and what
it can be used for [39]. People reported being less comfortable with
the idea that their locations can be either made public or used for
things other than contact tracing [39, 45]. However, these privacy
concerns can arise with decentralized applications as well. Reports
out of Singapore have stated that the local government officials are
requesting access to the data in the decentralized TraceTogether
application for purposes other than public health and pandemic
response [52]. Furthermore, a recent study that was conducted
specifically to understand people’s attitudes toward centralized and
decentralized applications for contact tracing revealed that people
were more likely to trust a centralized approach, citing that they
trusted a central authority more than a third party application [31].
This finding suggests that community members would likely adopt
a privacy-preserving centralized system for contact tracing that
is developed and maintained by a government or public health
authority that they trust.

Public health benefit: People are willing to install digital contact
tracing applications that can benefit public health such as reduction
in infection rate [26]. In general, using a contact tracing technology
can be viewed as a civic duty for the purpose of supporting public
health efforts [55]. The centralized approach can provide benefits
to public health as it can readily offer the number of people at risk
because it already possesses all the information about exposure, test
results, and contact information [42]. As a result, centralized sys-
tems are more suited to provide a "bigger picture" of the movement
and spread of the virus and transmission data than decentralized
systems [15].

Accuracy: Contact tracing technologies are perceived as more
accurate then manual tracing alone [32]. However, most of the
digital contact tracing technologies are also innately error prone.
In the context of proximity-determining applications, there are
two types of errors that can occur: 1) false positives, or when the
app falsely identifies a user as exposed when they were not, and
1) false-negatives, or when the app fails to detect an exposure
to a disease [26]. Saxena et al. estimated error rates between 7-
15%, including both false positive and false negative errors when
using the Bluetooth "handshake" method [47]. Despite this accuracy
issue, digital contact tracing apps notify the identified close contacts
without human verification process. In this work, we investigate
how the imperfect contact information identified by digital systems
can be effectively verified or disputed during a manual contact
tracing phone call. Below, we describe more background work
around this topic.

2.3 Decision Making with Imperfect Data
While diverse types of data and technologies have been suggested
to aid contract tracing efforts, researchers have discerned that data
and technologies are ultimately imperfect for identifying close
contacts [49]. For example, Park et al. investigated proximity studies
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in HCI and Ubicomp and pointed out that, in some contexts, the
locations of smartphones may not be a good representation of the
users’ locations [38]. Such imperfections can be understoodwith the
concept of the socio-technical gap, which refers to the gap between
“social requirements and technical feasibility [10].” In other words,
there is a gap between the previous proximity studies and the CDC
defined concept of close contact; the existing proximity studies
have explored computational ways to identify the proximity of two
different devices, however, identifying the CDC defined concept
of close contact poses other challenges such as the layout of the
environments (e.g., walls, stairs, and other physical or logistical
barriers) and the context of the social encounters (e.g., studying in
the library, shopping in a grocery store, or eating in the cafeteria).

Previous HCI researchers have investigated how people take
advantage of data when there is an inevitable socio-technical gap,
especially in the labor movement context [29], human rights ac-
tivism [12], resident-led initiatives to improve neighborhoods [34],
and homeless services [27]. Notably, Garcia et al. investigated how
human right activists in Mexico collaborate to utilize absent and
conflicting data to address social safety issues [12]. We echo Garcia
et al. in that the alliance between stakeholders is the most important
tenant in overcoming the imperfection of data in real world settings.
Based on the lessons learned in the previous data practice studies,
in this study, we explore technologies that can help stakeholders
(voluntary contact tracers and community members) to utilize one
type of imperfect but promising data to address a public health
issue.

Related to data practice studies, recent scholarship in human and
Artificial Intelligence (AI) collaboration investigated how people
can navigate the imperfect results of an AI system when they make
decisions [13]. Although our contact tracing visualization tool is not
using AI, the process of contact tracers and community members
making sense of imperfect WiFi data on-the-fly to make decisions
about who should be counted as close contacts is similar to the
way human interacts with limitations in AI algorithms for decision
making. Specifically, Cai et al. elaborated on imperfect algorithms
in the medical context describing that “no algorithm can perfectly
capture an expert’s ideal notion of similarity for every case [17].”
Therefore, users of AI systems developed their own strategies to
“disambiguate” data, algorithms, and the results of AI systems. These
human-centered approaches to human-AI collaboration or human-
data collaboration shed light on the importance of contextualized
AI systems or data in the existing work practices [18]. Inspired
by those human-centered AI studies, we investigate how contact
tracers can make decisions using the WiFi proximity data of com-
munity members. We focused on understanding the collaboration
between volunteer contact tracers andWiFi data as well as between
volunteer contact tracers and community members to contextualize
our proposed technology in existing contact tracing practices.

By aligning data practice studies and human-AI collaboration
studies, we set our design goal as investigating the potentials of
centralized forms of WiFi data in addressing public health concerns.
We acknowledge that WiFi data can be an imperfect aid to contact
tracing efforts and can bring privacy tensions, however, our study
can contribute to the understanding of the collaboration processes
between contact tracers and imperfect data in emergency situations

and future designs of technologies to aid contact tracing efforts to
contain pandemic situations.

3 USER-CENTERED DESIGN OF DIGITAL
CONTACT TRACING VISUALIZATION

We developed a digital contact tracing visualization with the goal
of capturing and displaying University community members’ loca-
tions over selected periods of time. We studied a university campus
because it provides both a readily accessible WiFi infrastructure
and an established contact tracing process with trained contact
tracers. The University that was studied is in an urban setting and
the majority of the community members utilize the WiFi network
for large parts of the day. In this section, we first explain the model
used to collect community members’ WiFi data, and then the design
process of the visualization tool. All methods and procedures ex-
plained in the following section were approved by the Institutional
Review Board (IRB) prior to conducting the study.

3.1 WiFi Location Data
Our study collects data using centralized proximity determination
via the University’s campus WiFi network. WiFi was chosen as
the source of data for this study due to its ability to provide loca-
tions and duration of co-located University members. Furthermore,
in contrast to approaches that require users to install an applica-
tion on their device, the infrastructure-based approach reduce the
user’s burden as they likely use the campus WiFi network in their
everyday lives.

When University community members have their wireless de-
vices connected to the campus WiFi network, these devices are
automatically authenticated with the network. Logs of these au-
thentications are kept for various maintenance and troubleshooting
purposes, and include access point identifiers, device identifiers,
and date and time stamps. In order to determine proximity with
this data, we examined the logs and determined which access point
a user’s device is connected to. The physical location of the ac-
cess point to which a device is authenticating is a proxy for the
approximate location person who is using that device. In addition,
the amount of time a device stays continuously authenticated at
a single access point can be inferred as the amount of time they
spent at that location.

In the approximate 250 buildings on this campus, there are over
7000 WiFi access points. The high density of access points on the
campus network make this method of determining co-location and
proximity reasonably accurate. This method is effective at providing
location and duration of co-locations, and, because most University
community members use the University WiFi, the adoption rate
is high (>90%). For contact tracing purposes, these are desirable
characteristics as proximity and duration of contact are essential
to determining close contacts.

One limitation associated with using centralized proximity de-
termination in this way is the potential to report false-positives.
Because WiFi access points can cover large areas, there is potential
for two co-locators to not actually come into close contact with
each other. In addition, false-negatives are possible because if a
community member has no device connected to WiFi or is out of
range of the access points, their data cannot be captured.
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As was noted in the background section, proximity determin-
ing systems where the data is stored in a central database can
raise privacy concerns among community members. In addition,
infrastructure based proximity determination is location data, and
people are less comfortable with the idea of their locations being
made public than who they have been in contact with [31]. Despite
these concerns, we believe the benefits of this approach such as
ease of access and infrastructure availability still offer a promising
opportunity to apply this to manual contact tracing.

3.2 Design Process
In order to design a technology to support University contact trac-
ers, we employed a human-centered design approach. The team
initially conducted interviews with contact tracers and developed
personas and storyboards to inform the problem space and de-
termine where the current contact tracing process falls short in
identifying close contacts of positive cases (Figure 1-a). Following
this, we conducted evaluation sessions and used the feedback to
refine the tool’s design (Figure 1-b). Below we explain the rationale
behind the final visualization, and how it was uniquely designed to
support contact tracers and help them achieve their goals.

3.2.1 User Research & Initial Design. To understand how Univer-
sity health systems approach contact tracing, and what opportu-
nities and challenges might arise for designing a digital tool in
the manual contact tracing process, we first interviewed 4 health
authorities from two different universities with established contact
tracing procedures. From one university we interviewed the Direc-
tor of Health Services, the Clinical Lead for Contact Tracing, and
the Contact Tracing Supervisor, and from the second university
we interviewed the Director of Health Services. These authorities
were in charge of recruiting contact tracers, setting up training, and
implementing guidelines and processes respective to their Universi-
ties. The interview questions were focused on understanding how a
university contact tracing system functions, and what opportunity
there is for the application of a new technology to support the
University’s effort. From the preliminary interviews, we found that
the university health authorities were encouraged by the idea to
alleviate challenges of contact tracing, but concerned with estab-
lishing trust between the community members and a tool that could
potentially have identifying information, and the tool’s ability to
capture off-campus contacts.

With these higher level focuses in mind, we conducted further
interviews with two trained, active University contact tracers in
order to understand their workflow when conducting a contact
tracing call. We found that a common challenge that contact tracers
face in their current process included how to identify close contacts
that the positive case has a difficult time recalling. This concept is
depicted in a story board (Figure 1-a) that demonstrates the issue
in the context of contact tracing, and served as a starting point for
a digital solution to the problem.

To address the challenge of community member’s recall, the
initial design of the visualization focused on highlighting the in-
formation of co-locators based on locations and duration that they
shared with a positive case (Figure 1-b). For example, data from
the WiFi authentication logs was visualized as a table of colored
blocks, with time on the X-axis, much like a Gantt chart [19], and

co-locator information on the Y-axis. Location was encoded as color,
and duration was encoded as the length of the block. The top row
of the table was the positive case, and subsequent rows of the visu-
alization were co-locators over a period of time, determined by a
date filter. If a person had co-located with the positive case, a block
would indicate for how long and in what type of location directly
below the corresponding block of the positive case.

An important part of contact tracing is understanding the in-
fectious period of the positive case, as it determines the timeline
of interest for contact tracers. This study was conducted between
May and August of 2021. At the time of the study, according to the
CDC, the infectious period, or period of time when the positive case
is capable of infecting others, is defined as starting 2 days before
someone becomes symptomatic or, for asymptomatic persons, 2
days prior to positive specimen collection [5]. If able to determine
this information, contact tracers can focus their conversations to
specific days and make a list of close contacts during those days
in the case investigation. Therefore, our initial design has the data
visualized on a timeline, and the intention was to give contact trac-
ers enough data to help community members that have forgotten
co-location events or close contacts.

3.2.2 Initial User Feedback & Final Design. The initial visualiza-
tion design was demonstrated via high-fidelity prototypes to the
4 university health authorities and two contact tracers that were
previously interviewed for the purpose of feedback on the design.
The participants acknowledged that the information presented
on the tool such as time-stamped location data and potential co-
locators has the potential to jog student memory. In addition, the
contact tracers in particular felt that knowing the general number
of interactions that a case has is beneficial before a call for prepa-
ration purposes. However, participants were concerned that the
visualization could present a privacy concern for people within
the community. For example, in the initial design, identifying co-
locator information, such as name and University ID, is visible in
the tool. In addition, the contact tracers claimed that there were
specific locations of interest that they considered at higher risk of
close contact, or "high case potential" (i.e., an indoor cafe is higher
risk than a outdoor seating area), and that they would like to group
by those areas.

Based on the feedback from the participants that were shown the
initial tool design, we addressed the privacy concern by changing
the tool design to show de-identified information of people who
tested positive and their co-locators. Both the positive cases’ and
potential co-locators’ name and University ID in the tool were
replaced with masked case ID’s that cannot be tracked back to
either community member. Only the contact tracer, who enters the
positives case’s masked ID at the top of the tool, knows the identity
of the positive case (Figure 2-1). Because the de-identified version
of the tool can still serve the purpose of supporting the contact
tracing process, for example, through memory jogging, we intend
for the de-identified design to be used in practice by contact tracers
as well as in the study. Additionally, to address the request for "high
case potential" areas, interaction functionalities were added such as
location category filtering and co-location sorting (Figure 2-2). To
sort the data, the contact tracers could click on the positive case’s
data of interest in the top row, and the visualization would update
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(a) Story Board (b) Initial Prototype (All names in this figure are mock names)

Figure 1: (a) The storyboard depicts a community member having trouble recalling his close contacts, but the contact tracer
uses the visualization tool to help jog his memory. (b) The initial prototype design shows time and co-locators on the X- and
Y-axes, respectively, and duration of co-location visualized as colored blocks. Co-location details and categorization are shown
in the right panel.

to show all co-locators in that location at the top of the table in
descending co-location duration.

The above mentioned design changes were presented to the same
group of participants, and the feedback was positive. The contact
tracers stated the need for flexibility in the timeline shown, because
on a call, the infectious period information can change. The final
tool design (Figure 2), included date input functionality (Figure 2-1)
to allow the contact tracer to edit dates shown within the view.
Finally, the meta data associated with a co-location event such as
building type and duration is shown in the panel above the table to
further contextualize the data visually for contact tracers (Figure
2-3). This design was carried over into the final visualization tool
(Figure 2-4).

4 EXPLORING THE VISUALIZATION TOOL IN
PRACTICE

In order to explore the visualization tool in use and understand
the implications of using WiFi location data as a means of support-
ing contact tracing efforts in a University setting, we conducted
mock contact tracing calls with contact tracers and community
volunteers. We received IRB approval for this user study. The mock
calls were conducted by providing previously trained contact trac-
ers with the visualization tool, and community volunteers acting
as "positive cases" intended for the tracers to investigate. All data
in the visualization tool was de-identified using masked case ID’s
for both the "positive case" and the co-locators in order to protect
privacy. We then conducted interviews with both contact tracers
and community members to surface participants’ attitudes, opin-
ions, and perceptions of the experience. The mock contact tracing
calls took an average of 13 minutes; the follow-up interviews with
contact tracers and community members took about an average of
25 minutes. We compensated a $25 Amazon gift card to the contact
tracer participants and $15 Amazon gift card to the community
member participants. The contact tracers were compensated more

than the community members because they conducted multiple
calls and therefore volunteered considerably more time during the
study than the volunteer community members, who only partici-
pated in one call each.
4.1 Participants
To recruit community member participants for the user study, an
email survey was sent out to every department mailing list of the
University explaining the purpose, procedure, and privacy condi-
tions of the study. The email stated that consent to participate did
not give the researchers access to browser history or information,
but only to logs of which WiFi access points that participants’ de-
vices are connected to. In addition, email recipients were assured
that their data would be de-identified and only used for this study,
and that the research team will only be able to identify individuals
if they consent to participate. Willing volunteers that responded
to the email were then contacted and scheduled for study sessions.
To recruit contact tracers, we contacted the clinical lead of the
University contact tracing program. She shared our recruitment
details to all of the contact tracers who were volunteering for con-
tact tracing at the University. In total, 5 contact tracers (4 female)
and 14 community volunteers (7 female) were recruited to partici-
pate. The breakdown of each group is shown in Table 1: Participant
Demographics. Of the 14 volunteers, 9 were students (6 female) that
resided on-campus, 4 were staff members (one female) that resided
off-campus, and one was a male faculty member that also resided
off-campus. Note that none of the participants from the previous
design study were recruited to participate in the mock contact trac-
ing calls. Data was analyzed immediately after every mock call, and
participant recruiting ended when recurring themes were recorded
in the data.
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Figure 2: The final design of the visualization tool includes (1) the input fields for a community member’s case ID and their
symptom timeline, (2) sorting and filtering functionalities, (3) information associated with a co-location event, and (4) WiFi
data visualization

Table 1: Participant Demographics

Group Code Gender Description

5 University Contact Tracers CT01 - 04 Female University contact tracing volunteer
CT05 Male University contact tracing volunteer

14 University Community Members

CM01, CM04, CM05, CM07, CM09, CM10 Female University student, resides on-campus
CM02, CM03, CM18 Male University student, resides on-campus
CM06, CM11, CM14 Male University staff, resides off-campus

CM13 Female University staff, resides off-campus
CM12 Male University faculty, resides off-campus

4.2 Preparation for mock-up contact tracing
phone calls

Prior to conducting the contact tracing calls, de-identified case ID
numbers were created for each volunteer community member and
any co-locators shown the tool. The contact tracers were given
the de-identified numbers for testing purposes and no identifiable
information was shared between the tracer and volunteer regarding
any close contacts identified during the call. In order to comply with
privacy restrictions of the study, login access to the tool was not
given to the contact tracers. Instead, tracers were able to access the
tool from the researcher’s desktop via the screen control function
of the Bluejeans meeting platform.

Each contact tracer was provided with a short video that demon-
strated the core functionalities of the tool intended for the contact

tracing procedure, and then walked through how to request screen
control from the researcher. To help contact tracers become familiar
with the tool, the researcher asked them to complete the following
five tasks with mock "positive case" data: 1) load mock student data
into the tool and set it for a specific time period, 2) use the tool to
identify co-locators to the "positive case" during a specific day and
time, 3) sort the data to show co-locators that spent the most time
with the "positive case", 4) sort the data to show co-locators from
residential areas, and 5) reset the data in the tool. After these tasks
were completed, tracers were allowed to explore any additional
functionalities of the tool, ask questions, and load the community
volunteers’ data prior to the start of the call.
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4.3 Mock-up contact tracing phone calls
Contact tracers were asked to participate in at least 2 mock contact
tracing calls. Due to difficulty recruiting available contact tracers,
one contact tracer volunteered to conduct 4 calls. Each community
volunteer participated in one mock call, resulting in 14 total contact
tracing calls. Prior to each call, community volunteers were given
fabricated dates that they started showing symptoms, received
a COVID19 test, and were notified of a positive test result. The
volunteers would use this hypothetical data to act as a "positive
case," and interacted with the tracer as such. Note that contact
tracers utilized the tool and its data while conducting their normal
contact tracing process with each "positive case." Although the
COVID-19 test result is fabricated, we used real location data of
community members and they engaged in conversation with the
contact tracer based on their actual movement history and close
contacts.

Community volunteers were given specific times to call into the
meeting via phone, and were not allowed to view the tool being
used during the contact tracing call. When the community volun-
teer called in, the contact tracing call would begin. The structure
of the call was intended to simulate a real-life contact tracing situa-
tion, where the tracers used the same script and process as if the
community volunteer had actually tested positive. Each call was
between one contact tracer and one community volunteer.

4.4 Follow-up interviews
Immediately following themock contact tracing calls, we conducted
semi-structured interviews with contact tracers. These interviews
were intended to assess the tracers attitudes and perceptions of the
tools usability, the challenges and benefits it presents to the contact
tracing process, and data privacy implications. To investigate us-
ability of the tool, questions focused on the process that the contact
tracers usually use during their calls, and how the tools function-
alities aid or hinder that process. When assessing challenges and
benefits of the tool, contact tracers were asked what aspects of
the tool and the data presented were challenging, and if the tool
helped identify additional close contacts. The data privacy-focused
questions were mainly focused on contact tracers’ perception and
comfort level with asking the "positive case" about data that they
can see in the tool.

Separate semi-structured interviews were conducted with each
community volunteer after they participated in their mock contact
tracing call. The interviews were focused on understanding the
experience of contact tracing with their data visible to the tracer,
their perceptions of data privacy, and their thoughts on public safety.
During the interviews, the community member was shown the tool
visualizing their own WiFi data. With the tool, the community
members were asked questions about their thoughts on their data
being used in this way for contact tracing, and if the visualization
accurately displayed their location data.

4.5 Data analysis
All mock calls and interview sessions were video-recorded. The
recordings were transcribed and analyzed for qualitative and em-
pirical data.

In order to answer our research goal of understanding benefits
and challenges that the data visualization introduces to the contact
tracing process, we used thematic analysis [16, 24] and open coding
to evaluate and categorize inferences from research participants.
The transcriptions of both contact tracers and community members’
interviews were reviewed line by line by the first author, and any
references to attitudes, feelings, or thoughts about the tool were
coded. Following this, two other authors reviewed the codes with
the first author and then grouped the codes together based on
common themes until a consensus was reached between all three
authors on the data. Codes were grouped based on the participant’s
attitude in relation to the tool. For example, if the context of the
code was something negative about the tool’s impact on the contact
tracing process or the tool itself such as inconsistencies in the data
streams, the code would be grouped with similar inferences, the
groups would be labeled, and associated as a challenge. Conversely,
if the participant inference was something they liked about the tool
or thought was helpful to the process such as the ability to facilitate
memory jogging, the grouping process would be repeated, and the
groups would be associated as a benefit.

The thematic analysis process resulted in three study themes
that framed the rest of our analysis and discussion. The theme for
benefit was determined to be promoting contact tracers confidence,
and the themes for challenges were privacy and inconsistencies.
Groups of sub-codes were organized under these themes. For ex-
ample, contact tracers and community members felt that the data
visualization would benefit the process by promoting context and
memory jogging, and the contact tracers in particular felt more
confident in their identification with the added context from the
tool. These codes were grouped under promoting contact tracers
confidence. Conversely, WiFi data ambiguity was often reported as
being challenging for participants to reason, therefore inferences
such as this were grouped under inconsistencies. Most of the codes
that were classified into the groups and categories were commonly
found by both groups of participants. However, one category—
promoting contact tracer’s confidence—was only mentioned by the
contact tracer participants.

The mock calls were analyzed for empirical data by reviewing
each call and logging specific data of interest as determined by the
qualitative data and research questions. Data of interest included
call lengths, number of discussions of specific event data, number of
contacts identified on each call, and number of contacts identified
in the tool and not in the tool.

5 RESULTS
Over the 14 mock phone calls conducted during the study, there
were 75 total instances where volunteer community members and
contact tracers discussed specific events, locations, and/or close
contacts, and 158 total close contacts were identified, resulting
in approximately 11 contacts identified per call (SD=11, min=1,
max=43). There was an average of 5 close contacts validated in
the tool and average of 6 close contacts validated outside the tool.
Average call time was 13 minutes with the longest being 30 minutes
and the shortest being 6 minutes (SD=7).

In this section, we first describe behaviors of interactions with
the data that the visualization enabled. We then report 3 types of
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inconsistencies between the visualization and community member
accounts: 1) WiFi data ambiguity, 2) community member’s memory,
and 3) information sharing hesitancy. For each inconsistency, we
present how contact tracers and community members resolved the
inconsistency, and the risk of leaving them unresolved. Finally, we
report accompanying findings on how study participants perceive
privacy and public safety.

During the mock contact tracing calls, contact tracers could
interact with the data by either validating co-location instances or
disputing them. Validation occurred when the community member
confirmed that a co-locator displayed in the visualization was a
close contact. Disputing data occurred when the data in the tool,
either the location data or co-locator data, did not match with the
community members account. When data was disputed, it was
referred to as an inconsistency. We refer contact tracer participants
as CT and community members as CM.

5.1 Inconsistencies
One consequence of using WiFi data in the contact tracing process
is the potential for data mismatches, or inconsistencies. An incon-
sistency occurred when a community member disputed the data
in the visualization. Inconsistencies occurred for three reasons: 1)
the community members account did not match the data in the
visualization due toWiFi data ambiguity, 2) the community member
did not remember a particular co-location event displayed in the
visualization, or 3) the community member did not want to share
information with the contact tracer.

Of the 75 instances where a contact tracer and a community
member discussed an event, 54 (72%) were associated with an in-
consistency. The remaining 21 (28%) discussions of events were not
associated with an inconsistency, and the data in the visualization
matched the community member’s recalled account exactly. Of
the 54 inconsistencies, 52 (96%) were resolved between the contact
tracer and the community member. To address the inconsistencies,
participants on the call would discuss specific data about the co-
location event and come to a logical conclusion about the nature of
the inconsistency. For example, in a cluster-event including false
positives, the community member and contact tracer would rea-
son why the cluster occurred, and record the correct number of
close contacts. Inconsistencies were typically resolved by either
the community member correcting the data in the visualization,
or the contact tracer using data in the tool to jog the community
members memory. An inconsistency remained unresolved when,
after discussion, the information could be neither validated or dis-
puted. Below, we report three different types of inconsistencies that
surfaced during the mock calls and how they were addressed by
the call participants.

5.1.1 WiFi Location Data Ambiguity. One source of inconsistency
was due to the centralized infrastructure-based proximity determi-
nation model. Because the data is captured via WiFi access points,
anyone with a device connected to the same access point as the
positive case will be displayed in the visualization as a co-locator.
WiFi access points cover large areas, and multiple people that are
not in close contact as defined by the CDC can be connected to the
same one.

The result of this was that during the mock calls, many com-
munity members reported fewer actual close contacts than the
visualization displayed. The remaining co-locators in the visualiza-
tion that were not validated were false-positives. False positives,
in the context of contact tracing, are when someone is reported as
exposed when they were not. Of the 54 inconsistencies during the
study, 24 (44%) were due to the tool reporting false-positives.

This type of inconsistency was usually resolved by the commu-
nity member correcting the data by confirming their location and
reporting the actual number of close contacts. For example, during
one call, a contact tracer asked a community member about an
instance in the visualization that showed the community member
in the library (such as Figure 2). The visualization displayed more
than 10 co-locators, but the community member only validated one
as a close contact. Upon addressing the inconsistency during the
call, the participants came to the conclusion that because it was
a large, open study space, there could have been several people
connected to the same WiFi access point. In this instance, the tool
displayed many false-positives, but the inconsistency was resolved.
False-positive cluster-events, or events where high density of peo-
ple connected to one WiFi access point, occurred in communal
buildings such as campus recreation centers, libraries, and study
halls.

Converse to reporting false-positives, the visualization also in-
troduced instances of false-negatives, or close contacts identified
by the community member that were not captured in the data visu-
alization. We found two reasons for false negative instances in our
study. The first reason for false negatives was if a community mem-
ber, either a positive case or co-locator, did not have their mobile
device connected to the campus WiFi. The second reason was when
community members had co-location instances off campus, out of
range of the campus WiFi. In both cases, because the community
members’ mobile devices were not authenticating with the network
of access points used in this study, their location data could not
be captured. Of the total 75 instances of close contacts discussed
between the contact tracer and community member, 18 (30%) were
cases where the community member recalled an event that was not
captured in the visualization due to being off campus or not having
their WiFi connected.

There was a evidence that the occurrence of these inconsistencies
reduced contact tracer trust in the visualization. For example, one
contact tracer felt that he "can’t rely 100% on the tool [CT02]" because
the data is not always accurate, therefore more context is needed to
identify close contacts. Another contact tracer claimed that because
the tool is limited in capturing a very granular level of proximity,
she would not rely solely on the tool for identification of close
contacts, but use it to verify or complement the human’s account
[CT03]. These findings show that contact tracers are aware of the
data ambiguity within the tool, and it impacted their trust in using
the visualization to identify close contacts.

5.1.2 Gap in Community Member’s Memory. The second type of
inconsistency occurred when the community member forgot or
mis-remembered an event. This happened in two ways: 1) the com-
munity member was asked for a recalled account of their move-
ments and contacts and they forget an event in the report, or 2) a
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contact tracer prompted the community member with information
and the community member initially did not recall the event.

To resolve this type of inconsistency, contact tracers most of-
ten tried to jog the community member’s memory by prompting
them with details from the visualization. During one mock call,
the contact tracer used the sort function to better visualize a large
co-location event in the community members data (see Figure 2
on Monday, May 3rd, approx 3pm ). The community member at
first claimed that he had stayed at his dorm that day, so did not
know what the data could be. When the contact tracer gave the
student a specific time, building name (Campus Recreation Center),
and duration of the event, the student remembered going to the
gym. In this case, having specific building data helped to jog the
community member’s memory, and they were able to come to a
logical conclusion in determining the large number of co-locators
were false-positives.

Both contact tracers and community members reported that mis-
remembering events could happen often, as it is difficult to recall
every interaction one has over several days. Of the 54 inconsisten-
cies, there were 10 that were resolved by the contact tracer jogging
the community members memory. In all 10 instances, the contact
tracer was able to prompt the community member with specific
dates, times, building names, or number of co-locators to assist
their recall. Contact tracers and community members perceived
that the contact tracers ability to jog memory with specific data as
a beneficial aspect of the visualization. One community member
recalled that they "[...] tested positive last fall and it was very difficult
to try to remember who I was around. [...] I guess the benefit of being
able to more easily remember what I was doing since I seem to have
forgetfulness of that at certain points [CM02]."

The effective use of the visualization tool to prompt and help jog
community members’ memory to resolve memory gap inconsisten-
cies is evidence that the visualization of WiFi location data is useful
for manual contact tracing. In situations where the community
member may not remember all of their interactions during their
infectious period, the visualization showed promise as a way to fill
the memory gap, thus addressing the well-known recall problem.

5.1.3 Information Sharing Hesitancy. The third cause of inconsis-
tency, though not encountered during our mock contact tracing
calls, is the reluctance of community members to share close con-
tact information. Although all community members in this study
were willing to share their close contact information and reported
they would do so for a real contact tracing scenario, many of the
contact tracers referenced previous experiences where a commu-
nity member who had tested positive did not want to share the
names and information of the people they had been in close contact
with. Notably, one reason for this is due to feeling guilty about
disrupting the life of their friends or colleagues to quarantine. The
community members had similar reports. One community member
reported that "I had to go through this whole [contact tracing] thing
last fall and I just felt bad at certain points to [have to] tell people I
was with. And then their whole lives [were] interrupted [CM02]."

The result of this is no data is addressed and no co-locators are
validated as close contacts. As with other unresolved inconsisten-
cies, contact tracers claimed remaining neutral and non-accusatory
was important if faced with this, or any, type of inconsistency. For

example, a contact tracer said "You’re trying to keep a good rapport
with [community members]. You’re trying to be his friend and his
ally, and you want them to trust you. So if you start saying, ’well, I
don’t think you’re telling me the truth here.’ or ’I don’t think you’re
right.’ Then, it might jeopardize that [CT5]."

5.1.4 Unresolved Inconsistencies. Of the 54 inconsistencies that
arose during the study, two remained unresolved. In both instances,
the inconsistency could not be resolved because the community
member claimed to not be in the location that the visualization
showed at the time that it showed. After discussing the data, the
community member and contact tracer could not come to a logical
conclusion as to what caused the inconsistency.

When inconsistencies arise, contact tracers felt they had to trust
either the community member account or the data in the visu-
alization. Some contact tracers were more inclined to trust the
community member, while others were more inclined to trust the
data. When asked what data to trust when addressing inconsisten-
cies, one tracer claimed "Assuming that they are telling the truth and
that they might be forgetting something and if they’re not maybe it’s
an error with the computer... just trusting the student [CT1]," and
another said "You can’t rely 100% on the tool, it just aids the case and
their memory [CT02]." Conversely, other contact tracers perceived
the specific details in the tool to be more reliable: "[Without this
tool] we would just have their word and their information, we would
not have actual facts [CT02]." However, instances where co-locators
were validated most "trusted" data by the contact tracers [CT4].

5.2 Privacy
The addition of WiFi location data to the contact tracing process
elicits concerns regarding data privacy, as many people are "very
private about their activity and presence on the internet [CM05]." For
example, one community member said "there’s a lot of debate about
location services and how moral it is for people to have access to that"
and that she is "paranoid about [her] data being used for the wrong
things [CM07]."

Many community members claimed that because the study was
clear in informing them of what data was going to be used and
that the data would be de-identified, they were more willing to
participate than if that information had not been provided. For
example, CM01 said, "the main thing is just to make sure people are
OK with it and they know exactly what it’s being used for [CM01]."
These findings suggest that the explicit communication of data
that will be collected, and demonstrating how it is presented in
the visualization, alleviated their privacy concerns associated with
sharing their data for use in the visualization tool. For example,
after being shown the tool, one student claimed that she would
consent to providing her data because "they’re not going to [...] have
all the information, like who you’ve been texting or what you’ve been
searching [CM05]." The transparency offered in this study enhanced
the community members trust in how their data will be used.

Some community members expressed that they feel they should
have access to the visualization themselves. The reasons for this
varied by community member. One community member wanted
access to the tool for the purpose of data agency and transparency.
She felt that if she wanted to revoke permission to share her data,
she could check the tool. "...If I reached a point and felt like I had
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changed my mind [...] I could log in and see it’s blank. I think that
transparency would be really valuable [CM07]." Additionally, other
community members felt that because it is their data, they have a
right to view it, claiming that "people should be given free access to
their own data [CM10]."

5.3 Promoting Confidence of Contact Tracers
The contact tracers felt that being able to see location data and
number of co-locators before the call in the visualization was par-
ticularly useful because they could prepare their approach for the
call, estimate call time, and evaluate "potential level of risk [CT04]."
In a regular contact tracing call, the tracer may only have the posi-
tive cases’ name or ID number. "Being a contact tracer, you are given
a name and phone number. [...] you don’t know what you’re stepping
into [CT02]."

When the tracers were allowed to view the community members’
data using the visualization before the call, they often identified
instances of interest that they noted as important to ask. This was
helpful for tracers to estimate a number of close contacts and aid
in "management and distribution of cases [CT02]". One tracer men-
tioned that if a community member had a particularly high number
of co-locators, the contact tracing team might split the follow up
calls between them to better manage their time. "It could be a ten
minute call or it could be a ten hour call. Especially when people
lived in fraternity and sorority houses [CT02]." In this case, when
a student has many co-locators or is deemed "high risk" based on
their movements or living situation, viewing the data before the
call can allow the contact tracer to be better informed and more
deliberate, and potentially work through a lot of data in a short
period of time.

Moreover, the visualization helped to give more context to con-
tact tracers. In one case, the contact tracer stated that she was not
familiar with campus, so she would sometimes have difficulty when
conversing about locations with community members. "It’s nice that
you can see where [people] were. I’m not familiar with the campus,
but for me to be able to pin point [a location] for them a little bit more
helps [CT03]." Having access to categorized location data during
the mock calls allowed this tracer to be more confident and have a
more productive conversation with the community member. For
example, being shown the name and type of building will allow
the contact tracer to prompt with more specific information, and
understand the nature of events that are being discussed.

6 DISCUSSION
In this section, we present our findings in the context of socio-
technical gaps in sensed-data systems, and discuss how these find-
ings can inform the design of technologies that are developed to
support decision making by making sense of imperfect data. Fur-
ther, we discuss strategies that organizations should consider to
address privacy and trust issues that can arise when deploying such
systems in practice.

6.1 Socio-Technical Gaps
By providing the WiFi location data visualization to study partic-
ipants as a means for working together to achieve the goal, we
shifted the manual close contact identification process to computer

supported cooperative work (CSCW) [37]. In doing so, we expose
and investigate the socio-technical gaps [10] that arise as a result
of the CSCW-adaptation to manual contact tracing.

During the mock contact tracing calls, we observed examples
of socio-technical gaps. Most commonly, the gaps were due to
imperfect data within the system. For example, the occurrence of
false positive and false negative reports were gaps that resulted from
the spatial resolution of the data. Due to the access points in the
University WiFi infrastructure covering large areas, false-positive
reports were common in large buildings such as the library or gym.
In these large buildings, many people who are not in close contact
can be connected to the same WiFi access point, thus showing as
co-locators in the WiFi location data visualization. Alternatively,
the high number of close contact identifications on the mock calls
that were not captured in the data due to off-campus, out of range
gatherings demonstrates that infrastructure based sensing is limited
to the scope of the network itself.

In addition to the socio-technical gaps, we found community
members’ memory gaps and information sharing was also a chal-
lenge. Although these inconsistencies were present, contact tracers
accomplished their goal of identifying close contacts of a commu-
nity member by making sense of the the inconsistencies together
with the community member. Below, we further discuss how the ex-
istence of socio-technical gaps in sensed data systems requires the
users of the system to reason the data, or engage in sensemaking,
in order to complete the decision making process.

6.2 Sensemaking of Imperfect Data
A significant body of HCI work in the health domain has explored
strategies and tensions that arise when people make sense of imper-
fect data with others in collaborative settings [40, 41, 43, 54]. We
contribute to the existing body of research by uncovering factors
that facilitate and/or complicate making sense of imperfect data in
the context of contact tracing. For example, our findings showed
that visualizing the data that provides context such as building
names and dates helped contact tracers jog community members’
imperfect memory and confirm their account with the data. There-
fore, it increased contact tracers’ confidence in the subsequent close
contact identifications. Moreover, the data showing location and
number of co-locators boosted the confidence of contact tracers in
assessing the relative risk and mobility of a positive case before the
start of the call with a community member.

However, as was discussed above, there still exists the need to
reason data that is unexpected, counterintuitive, or imperfect [41].
Before and during the mock contact tracing calls, the study partici-
pants engaged in collaborative sensemaking behaviors in order to
understand and reason the data shown in the visualization, espe-
cially when more context was needed for an accurate close contact
identification (e.g., in the false positive instance where a commu-
nity member was only in close contact with one person, but the
visualization showed many co-locators in a big building). Below,
drawing from the collaborative sensemaking literature [40, 41], we
discuss how study participants collaboratively reasoned the data
that was provided in order to resolve gaps and confidently identify
close contacts to the positive case. Further, we recommend design
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elements that can highlight and assist in collaborative sensemaking
of imperfect data.

6.2.1 Designing for Sensemaking. Due to the need to contextual-
ize, reason, and make decisions with imperfect data, visualization
systems should be designed specifically to support sensemaking
of data. Particularly in visualizations that are intended to be used
for collaborative decision making, providing context to the user for
interpretation is crucial [43]. In the case of our visualization tool,
the inconsistencies and gaps need to be contextualized in order for
the contact tracers and community members to confidently identify
close contacts.

Prioritizing Relevant Data: One way of adding context to data
that is common in collaborative sensemaking the use of prioritiza-
tion [40]. We observed specific data being discussed by the study
participants repeatedly, indicating that this data was a priority for
identifying close contacts. The contact tracers tended to confirm
locations via building name and category provided in the tool, and
time of a co-location event. In addition, the number of co-locators
presented in the data was frequently asked to the community mem-
ber as a way to confirm the number of close contacts.

This observation is similar to previous work’s finding on the
characteristics of collaborative sensemaking that prioritizing pieces
of data is key for decision making within a group. As people are
given information to consider, they make judgements on its rele-
vancy and therefore importance to the final decision [40]. Because
the need to contextualize and make sense of imperfect data due
to socio-techincal gaps is common in sensed-data technologies,
these systems should be designed to make the relevant information
more visual in the right context so that the collaborators can easily
prioritize the data to resolve the inconsistencies.

Surfacing the Gaps: We also suggest adding design elements in
technologies using imperfect data that detect and surface when data
is at risk of inconsistencies or gaps. For example, in our study, areas
such as the campus recreation center and library produced many
false-positive situations due to the high density of people in the
building. To address this, creating an indicator on the co-location
instance in the visualization explaining that the instance is part of a
cluster-event that could include false positives would be beneficial
to reduce cognitive load and aid in quicker collaboration. Or, for a
more interactive approach, a pop-up or modal that informs the user
of potential risks. Highlighting this information is a way to alert
the tracer that this data likely needs addressing, and supports the
collaborative decision making process between the contact tracer
and the community member by adding context to the potential
inconsistency. Additionally, transparency within a system is crucial
for building user trust in the data it is presenting [30]. By explicitly
surfacing where the system is lacking, collaborators will have more
confidence in using the system, as they will feel informed and
prepared of the gaps they will likely face.

Refinement of Data: Consistent with previous work [15, 30], our
result suggests the possibility that contact tracers may lose trust in
a contact tracing visualization that produces false-positive or false-
negative results regularly. Especially within systems where data is
used for collaborative decision making, such as a contact tracer and
a community member identifying close contacts, trust in the data
is a key component of success [43]. "Data refinement" has been

suggested as a technique to increase user’s trust in the system by
allowing users to make small incremental changes to results from a
system in order to increase the utility of the results to the user [17].
By being able to actively interact with the system and refine and
make sense of the results, users feel agency in being able to "guide"
the system to return results that were more beneficial, and thus
more trust in its output. Our findings of the conversations that
lead to inconsistency resolution and decision of close contacts were
aligned with the concept of "data refinement." Because the contact
tracers and community members were able to address both recall
data and visualization data incrementally, they could make small
changes to the information being presented in the visualization
in order to validate, dispute, or capture extra data. Therefore, we
suggest systems that are designed to explicitly support this data
refinement process by allowing contact tracers to mark, make notes,
and interact with the data as they are actively on a call with a
community member. For example, in the case of false positives, the
contact tracer might benefit from marking all those co-location
instances as such, or, in the case of false-negatives, contact tracers
can refine the visualization by adding the co-location instances into
the tool. This refinement concept can not only visually add context
to the data, but it would also build more confidence in the system
as it allows contact tracers agency over the data they are using.

6.3 Designing for the Community
For systems that utilize community member data for decision mak-
ing, we found that trust needs to be established between the com-
munity and the authorities that use the data. In this section, we
discuss ways to assuage the privacy concerns that people may have
when sharing their data.

6.3.1 Communication & Privacy. In addition to inconsistencies
caused by the limitations of the technology, the visualization’s
data collection requirement can also be a potential driver for socio-
technical gaps in the system. Infrastructure-based, centralized con-
tact tracing systems decrease the individual’s privacy and control
of their data. In the context of passive data collection for health
purposes, a review of the space reported that people are willing
to share their sensed data within groups of people with similar
health goals or with physicians, however, applications that require
data collection see declining adherence specifically due to privacy
concerns [48].

Because the uptake of contact tracing systems is crucial to their
efficacy, if individuals opt out or do not consent to have their data
collected, the tool becomes less useful [31]. For these reasons, when
deploying systems that collect individual data, efforts should be
made in order to make sure that the community is fully informed
of the system and its use.

Especially for systems that collect user data, it is important to
communicate to the community of intended users what data will
be collected and how it will be used. We found that when people
are aware of what their data is being used for, they can make more
informed decisions about whether or not to participate, and they
can assess for themselves if they are comfortable with sharing. In
addition, opt-in or opt-out options should be designed into the
system so community members feel comfortable with changing
their mind and have agency to do so.
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6.3.2 Community Access to the Tool. There are many contact trac-
ing systems such as NOVID and TraceTogether built for commu-
nity members by allowing them to collect data using their own de-
vices [3, 21]. Therefore, to explore a new area of research–increasing
contact tracing efficiency from an organizational context–we de-
signed the visualization specifically for use by contact tracers by
utilizing organizational infrastructure. Interestingly, our findings
indicate that many community members felt that they would also
benefit from having access to the visualization. For example, some
community members felt that they should be given access to the
data that they are providing, thus creating a sense of agency over
the process and supporting transparency. Allowing community
member access to the tool before a contact tracing call could also
serve as memory jogging, because they will be able to see the data
that the contact tracer would be using.

When considering whether or not to give the community mem-
bers access to their data in the contact tracing technology, privacy
of co-locators should be considered. Currently, contact tracers do
not reveal to close contacts who the positive was, however, with co-
location data there is potential for that information to be revealed.
Additionally, it should be considered if community members have
access to the tool at all times or only if they receive a positive test
and require contact tracing.

7 LIMITATIONS
One limitation associated with this study is the small number of
participants. Due to contact tracer volunteers needing specialized
skills, the pool of volunteers was small. In addition, our study
likely contains bias within the community members. In order for
the community members to participate in the study, they had to
consent to letting us use their location data in the visualization
tool. Therefore, participants who were willing to participate in our
study already felt comfortable with sharing their WiFi data for
contact tracing purposes. This bias excludes community members
that are not comfortable with sharing their data from participating
in the study. Future studies should explore perspectives of those
community members who are uncomfortable sharing their data for
contact tracing purposes.

Lastly, the real-world application of this study is limited due to its
utilization of the large, pre-existing network infrastructure available
on an organization. Despite the limitations, our contribution of how
to support collaborative sensemaking through the design of systems
that use imperfect data still presents useful insights.

8 CONCLUSION
Our visualization tool designed for manual contact tracing success-
fully supported contact tracers in jogging memory of community
members and boosting their confidence. However, we further found
challenges in incorporating the visualization in the contact tracing
process due to inconsistencies that arose between the community
members’ account and WiFi location data, as well as privacy con-
cerns regarding using WiFi location data in contact tracing. In
designing tools that make use of imperfect data, we recommend
design elements that highlight data potentially at risk for inconsis-
tencies, in order to help users prioritize and make sense of the data.
We further suggest incorporating data refinement opportunities

within the system in order to build trust between the user and the
system and support confident decision making. Lastly, we present
the need for organizations to be fully transparent in their collection
and use of community member data, in order to better inform and
potentially assuage any privacy concerns that the community may
have when deploying a system that utilizes their data.
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