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Newton’s laws hold only in inertial frames of reference. However, there are many
non-inertial (that is, accelerated) frames of reference that we might reasonably want
to study, such as elevators, merry-go-rounds, and so on. Is there any possible way
to modify Newton’s laws so that they hold in non-inertial frames, or do we have to
give up entirely on F = ma?

It turns out that we can indeed hold onto our good friend F = ma, provided
that we introduce some new “fictitious” forces. These are forces that a person in
the accelerated frame thinks exist. If she applies F = ma while including these new
forces, then she will get the correct answer for the acceleration, a, as measured with
respect to her frame.

To be quantitative about all this, we’ll have to spend some time determining
how the coordinates (and their derivatives) in an accelerated frame relate to those
in an inertial frame. But before diving into that, let’s look at a simple example
which demonstrates the basic idea of fictitious forces.

Example (The train): Imagine that you are standing on a train that is accelerating
to the right with acceleration a. If you wish to remain at the same spot on the
train, there must be a friction force between the floor and your feet, with magnitude
Ff = ma, pointing to the right. Someone standing in the inertial frame of the ground
will simply interpret the situation as, “The friction force, Ff = ma, causes your
acceleration, a.”
How do you interpret the situation, in the frame of the train? (Imagine that there
are no windows, so that all you see is the inside of the train.) As we will show below
in eq. (9.11), you will feel a fictitious translation force, Ftrans = −ma, pointing to
the left. You will therefore interpret the situation as, “In my frame (the frame of the
train), the friction force Ff = ma pointing to my right exactly cancels the mysterious
Ftrans = −ma force pointing to my left, resulting in zero acceleration (in my frame).”
Of course, if the floor of the train is frictionless so that there is no force at your feet,
then you will say that the net force on you is Ftrans = −ma, pointing to the left. You
will therefore accelerate with acceleration a to the left, with respect to your frame

IX-1



IX-2 CHAPTER 9. ACCELERATED FRAMES OF REFERENCE

(the train). In other words, you will remain motionless with respect to the inertial
frame of the ground, which is all quite obvious to someone standing on the ground.
In the case where the friction force at your feet is nonzero, but not large enough
to balance out the whole Ftrans = −ma force, you will end up being jerked toward
the back of the train. This undesired motion will continue until you make some
adjustments with your feet or hands in order to balance out all of the Ftrans force.
Such adjustments are generally necessary on a subway train, at least here in Boston,
where hands are often crucial.

Let’s now derive the fictitious forces in their full generality. The main task here
is to relate the coordinates in an accelerated frame to those in an inertial frame, so
this endeavor will require a bit of math.

9.1 Relating the coordinates

Consider an inertial coordinate system with axes x̂I, ŷI, and ẑI, and let there be
another (possibly accelerating) coordinate system with axes x̂, ŷ, and ẑ. These axes
will be allowed to change in an arbitrary manner with respect to the inertial frame.
That is, the origin may undergo acceleration, and the axes may rotate. (This is
the most general possible motion, as we saw in Section 8.1.) These axes may be
considered to be functions of the inertial axes. Let OI and O be the origins of the
two coordinate systems.

Let the vector from OI to O be R. Let the vector from OI to a given particle be
rI. And let the vector from O to the particle be r. (See Fig. 9.1 for the 2-D case.)
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Then
rI = R + r. (9.1)

These vectors have an existence that is independent of any specific coordinate sys-
tem, but let us write them in terms of some definite coordinates. We may write

R = Xx̂I + Y ŷI + ZẑI,

rI = xIx̂I + yIŷI + zIẑI,

r = xx̂ + yŷ + zẑ. (9.2)

For reasons that will become clear, we have chosen to write R and rI in terms of
the inertial-frame coordinates, and r in terms of the accelerated-frame coordinates.
If desired, eq. (9.1) may be written as

xIx̂I + yIŷI + zIẑI = (Xx̂I + Y ŷI + ZẑI) + (xx̂ + yŷ + zẑ) . (9.3)

Our goal is to take the second time derivative of eq. (9.1), and to interpret the
result in an F = ma form. The second derivative of rI is simply the acceleration of
the particle with respect to the inertial system, and so Newton’s second law tells us
that F = mr̈I. The second derivative of R is the acceleration of the origin of the
moving system. The second derivative of r is the tricky part. Changes in r can come
about in two ways. First, the coordinates (x, y, z) of r (which are measured with
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respect to the moving axes) may change. And second, the axes x̂, ŷ, ẑ themselves
may change. So even if (x, y, z) remain fixed, the r vector may still change.1 Let’s
be quantitative about this.

Calculation of d2r/dt2

We should clarify our goal here. We would like to obtain d2r/dt2 in terms of the
coordinates in the moving frame, because we want to be able to work entirely in
terms of the coordinates of the accelerated frame, so that a person in this frame can
write down an F = ma equation in terms of only her coordinates, without having
to consider the underlying inertial frame at all.2

The following exercise in taking derivatives works for a general vector A =
Axx̂ + Ayŷ + Azẑ in the moving frame (it’s not necessary that it be a position
vector). So we’ll work with a general A and then set A = r when we’re done.

To take d/dt of A = Axx̂ + Ayŷ + Azẑ, we can use the product rule to obtain

dA
dt

=
(

dAx

dt
x̂ +

dAy

dt
ŷ +

dAz

dt
ẑ
)

+
(

Ax
dx̂
dt

+ Ay
dŷ
dt

+ Az
dẑ
dt

)
. (9.4)

Yes, the product rule works with vectors too. We’re doing nothing more than
expanding (Ax + dAx)(x̂ + dx̂)−Axx̂, etc., to first order.

The first of the two terms in eq. (9.4) is simply the rate of change of A, as
measured with respect to the moving frame. We will denote this quantity by δA/δt.

The second term arises because the coordinate axes are moving. In what manner
are they moving? We have already extracted the motion of the origin of the moving
system (by introducing the vector R), so the only thing left is a rotation about some
axis ω through the origin (see Theorem 8.1). This axis may be changing in time,
but at any instant a unique axis of rotation describes the system. The fact that the
axis may change will be relevant in finding the second derivative of r, but not in
finding the first derivative.

We saw in Theorem 8.2 that a vector B of fixed length (the coordinate axes
here do indeed have fixed length), rotating with angular velocity ω ≡ ωω̂, changes
at a rate dB/dt = ω × B. In particular, dx̂/dt = ω × x̂, etc. So in eq. (9.4), the
Ax(dx̂/dt) term, for example, equals Ax(ω× x̂) = ω× (Axx̂). Adding on the y and
z terms gives ω × (Axx̂ + Ayŷ + Az ẑ) = ω ×A. Therefore, eq. (9.4) yields

dA
dt

=
δA
δt

+ ω ×A. (9.5)

This agrees with the result obtained in Section 8.5, eq. (8.39). We’ve basically given
the same proof here, but with a little more mathematical rigor.

1Remember, the r vector is not simply the ordered triplet (x, y, z). It is the whole expression,
r = xx̂ + yŷ + zẑ. So even if (x, y, z) are fixed, meaning that r doesn’t change with respect to
the moving system, r can still change with respect to the inertial system if the x̂, ŷ, ẑ axes are
themselves moving.

2In terms of the inertial frame, d2r/dt2 is simply d2(rI−R)/dt2, but this is not very enlightening
by itself.
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We still have to take one more time derivative. The time derivative of eq. (9.5)
yields

d2A
dt2

=
d

dt

(
δA
δt

)
+

dω

dt
×A + ω × dA

dt
. (9.6)

Applying eq. (9.5) to the first term (with δA/δt in place of A), and plugging eq.
(9.5) into the third term, gives

d2A
dt2

=

(
δ2A
δt2

+ ω × δA
δt

)
+

(
dω

dt
×A

)
+

(
ω × δA

δt
+ ω × (ω ×A)

)

=
δ2A
δt2

+ ω × (ω ×A) + 2ω × δA
δt

+
dω

dt
×A. (9.7)

At this point, we will now set A = r, so we have

d2r
dt2

=
δ2r
δt2

+ ω × (ω × r) + 2ω × v +
dω

dt
× r, (9.8)

where v ≡ δr/δt is the velocity of the particle, as measured with respect to the
moving frame.

9.2 The fictitious forces

From eq. (9.1) we have
d2r
dt2

=
d2rI

dt2
− d2R

dt2
. (9.9)

Let us equate this expression for d2r/dt2 with the one in eq. (9.8), and then multiply
through by the mass m of the particle. Recognizing that the m(d2rI/dt2) term is
simply the force F acting on the particle (F may be gravity, a normal force, friction,
tension, etc.), we may write the result as

m
δ2r
δt2

= F−m
d2R
dt2

−mω × (ω × r)− 2mω × v −m
dω

dt
× r

≡ F + Ftranslation + Fcentrifugal + FCoriolis + Fazimuthal, (9.10)

where the fictitious forces are defined as

Ftrans ≡ −m
d2R
dt2

,

Fcent ≡ −mω × (ω × r),
Fcor ≡ −2mω × v,

Faz ≡ −m
dω

dt
× r. (9.11)

We have taken the liberty of calling these quantities “forces”, because the left-
hand side of eq. (9.10) is simply m times the acceleration, as measured by someone
in the accelerated frame. This person should therefore be able to interpret the
right-hand side as some effective force. In other words, if a person in the accelerated
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frame wishes to calculate maacc ≡ m(δ2r/δt2), she simply needs to take the true
force F, and then add on all the other terms on the right-hand side, which she will
then quite reasonably interpret as forces (in her frame). She will interpret eq. (9.10)
as an F = ma statement in the form,

maacc =
∑

Facc. (9.12)

Note that the extra terms in eq. (9.10) are not actual forces. The constituents of
F are the only real forces in the problem. All we are saying is that if our friend in the
moving frame assumes the extra terms are real forces, and if she then adds them to
F, then she will get the correct answer for m(δ2r/δt2), the mass times acceleration
in her frame.

For example, consider a box (far away from other objects, in outer space) that
accelerates at a rate of g = 10 m/s2 in some direction. A person in the box will feel
a fictitious force of Ftrans = mg down into the floor. For all she knows, she is in
a box on the surface of the earth. If she performs various experiments under this
assumption, the results will always be what she expects. The surprising fact that no
local experiment can distinguish between the fictitious force in the accelerated box
and the real gravitational force on the earth is what led Einstein to his Equivalence
Principle and his theory of General Relativity (discussed in Chapter 13). These
fictitious forces are more meaningful than you might think.

As Einstein explored elevators,
And studied the spinning ice-skaters,
He eyed as suspicious,
The forces, fictitious,
Of gravity’s great imitators.

Let’s now look at each of the fictitious forces in detail. The translational and
centrifugal forces are fairly easy to understand. The Coriolis force is a little more
difficult. And the azimuthal force can be easy or difficult, depending on how exactly
ω is changing (we’ll mainly deal with the easy case).

9.2.1 Translation force: −md2R/dt2

This is the most intuitive of the fictitious forces. We’ve already discussed this force
in the train example in the introduction to this chapter. If R is the position of the
train, then Ftrans ≡ −md2R/dt2 is the fictitious force you feel in the accelerated
frame.

9.2.2 Centrifugal force: −m~ω × (~ω × r)

This force goes hand-in-hand with the mv2/r = mrω2 centripetal acceleration as
viewed by someone in an inertial frame.
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Example 1 (Standing on a carousel): Consider a person standing motionless on
a carousel. Let the carousel rotate in the x-y plane with angular velocity ω = ωẑ (see
Fig. 9.2). What is the centrifugal force felt by a person standing at a distance r from

ω

Fcent

Figure 9.2
the center?

Solution: ω × r has magnitude ωr and points in the tangential direction, in the
direction of motion (ω×r is simply the velocity as viewed by someone on the ground,
after all). Therefore, mω × (ω × r) has magnitude mrω2 and points radially inward.
Hence, the centrifugal force, −mω× (ω× r), points radially outward with magnitude
mrω2.

Remark: If the person is not moving with respect to the carousel, and if ! is constant,
then the centrifugal force is the only non-zero fictitious force in eq. (9.10). Since the person
is not accelerating in her rotating frame, the net force (as measured in her frame) must be
zero. The forces in her frame are (1) gravity pulling downward, (2) a normal force pushing
upward (which cancels the gravity), (3) a friction force pushing inward at her feet, and (4)
the centrifugal force pulling outward. We conclude that the last two of these must cancel.
That is, the friction force points inward with magnitude mrω2.

Of course, someone standing on the ground will observe only the first three of these forces,

so the net force will not be zero. And indeed, there is a centripetal acceleration, v2/r = rω2,

due to the friction force. To sum up: in the inertial frame, the friction force exists to provide

an acceleration. In the rotating frame, the friction force exists to balance out the mysterious

new centrifugal force, in order to yield zero acceleration. ♣

Example 2 (Effective gravity force, mgeff): Consider a person standing mo-
tionless on the earth, at a polar angle θ. (See Fig. 9.3. The way we’ve defined

Fcent
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Figure 9.3

it, θ equals π/2 minus the latitude angle.) She will feel a force due to gravity, mg,
directed toward the center of the earth.3 But in her rotating frame, she will also feel
a centrifugal force, directed away from the rotation axis. The sum of these two forces
(that is, what she thinks is gravity) will not point radially, unless she is at the equator
or at a pole. Let us denote the sum of these forces as mgeff .

To calculate mgeff , we must calculate −mω× (ω× r). The ω× r part has magnitude
Rω sin θ, where R is the radius of the earth, and it is directed tangentially along the
latitude circle of radius R sin θ. So −mω × (ω × r) points outward from the z-axis,
with magnitude mRω2 sin θ, which is just what we expect for something traveling at
frequency ω in a circle of radius R sin θ. Therefore, the effective gravitational force,

mgeff ≡ m
(
g − ω × (ω × r)

)
, (9.13)

points slightly in the southerly direction (for someone in the northern hemisphere),
as shown in Fig. 9.4. The magnitude of the correction term, mRω2 sin θ, is small
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Figure 9.4

compared to g. Using ω ≈ 7.3 · 10−5 s−1 (that is, one revolution per day, which is 2π
radians per 86,400 seconds) and R ≈ 6.4 · 106 m, we find Rω2 ≈ .03m/s2. Therefore,
the correction to g is about 0.3% at the equator. But it is zero at the poles. Exercise
1 and Problem 1 deal further with geff .

3Note that we are using g to denote the acceleration due solely to the gravitational force. This
isn’t the “g-value” that the person measures, as we will shortly see.
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Remarks: In the construction of buildings, and in similar matters, it is of course geff , and
not g, that determines the “upward” direction in which the building should point. The exact
direction to the center of the earth is irrelevant. A plumb bob hanging from the top of a
skyscraper touches exactly at the base. Both the bob and the building point in a direction
slightly different from the radial, but no one cares.

If you look in table and find that the acceleration due to gravity in New York is 9.803m/s2,

remember that this is the geff value and not the g value (which describes only the gravitational

force, in our terminology). The way we’ve defined it, the g value is the acceleration with

which things would fall if the earth kept its same shape but somehow stopped spinning. The

exact value of g is therefore generally irrelevant. ♣

9.2.3 Coriolis force: −2m~ω × v

While the centrifugal force is very intuitive concept (everyone has gone around a
corner in a car), the same thing cannot be said about the Coriolis force. This force
requires a non-zero velocity v relative to the accelerated frame, and people normally
don’t move appreciably with respect to their car while rounding a corner. To get a
feel for this force, let’s look at two special cases.

Case 1 (Moving radially on a carousel): A carousel rotates with constant
angular speed ω. Consider someone walking radially inward on the carousel, with
speed v (relative to the carousel) at radius r (see Fig. 9.5). ω points out of the page,

v

Fcor

Figure 9.5

so the Coriolis force −2mω × v points tangentially in the direction of the motion of
the carousel (that is, to the person’s right, in our scenario), with magnitude

Fcor = 2mωv. (9.14)

Let’s assume that the person counters this force with a tangential friction force of
2mωv (pointing to his left) at his feet, so that he continues to walk on the same radial
line.4

Why does this Coriolis force (and hence the tangential friction force) exist? It exists
so that the resultant friction force changes the angular momentum of the person
(measured with respect to the lab frame) in the proper way. To see this, take d/dt
of L = mr2ω, where ω is the person’s angular speed with respect to the lab frame,
which is also the carousel’s angular speed. Using dr/dt = −v, we have

dL

dt
= −2mrωv + mr2(dω/dt). (9.15)

But dω/dt = 0, because the person is staying on one radial line, and we’re assuming
that the carousel is arranged to keep a constant ω. Eq. (9.15) then gives dL/dt =
−2mrωv. So the L of the person changes at a rate of −(2mωv)r. This is simply the
radius times the tangential friction force applied by the carousel. In other words, it
is the torque applied to the person.

4There is also the centrifugal force, which is countered by a radial friction force at the person’s
feet. This effect won’t be important here.
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Remark: What if the person does not apply a tangential friction force at his feet? Then

the Coriolis force of 2mωv produces a tangential acceleration of 2ωv in his frame, and

hence the lab frame also. This acceleration exists essentially to keep the angular momentum

(measured with respect to the lab frame) of the person constant. (It is constant in this

scenario, because there are no tangential forces in the lab frame.) To see that this tangential

acceleration is consistent with conservation of angular momentum, set dL/dt = 0 in eq.

(9.15) to obtain 2ωv = r(dω/dt). The right-hand side of this is by definition the tangential

acceleration. Therefore, saying that L is conserved is the same as saying that 2ωv is the

tangential acceleration (for this situation where the inward radial speed is v). ♣

Case 2 (Moving tangentially on a carousel): Now consider someone walking
tangentially on a carousel, in the direction of the carousel’s motion, with speed v
(relative to the carousel) at constant radius r (see Fig. 9.6). The Coriolis force

v

Fcor

Figure 9.6

−2mω × v points radially outward with magnitude 2mωv. Assume that the person
applies the friction force necessary to continue moving at radius r.
There is a simple way to see why this outward force of 2mωv exists. Let V ≡ ωr be
the speed of a point on the carousel at radius r, as viewed by an outside observer.
If the person moves tangentially (in the same direction as the spinning) with speed
v relative to the carousel, then his speed as viewed by the outside observer is V + v.
The outside observer therefore sees the person walking in a circle of radius r at speed
V + v. The acceleration of the person in the ground frame is therefore (V + v)2/r.
This acceleration must be caused by an inward-pointing friction force at the person’s
feet, so

Ffriction =
m(V + v)2

r
=

mV 2

r
+

2mV v

r
+

mv2

r
. (9.16)

This friction force is of course the same in any frame. How, then, does our person
on the carousel interpret the three pieces of the inward-pointing friction force in
eq. (9.16)? The first term simply balances the outward centrifugal force due to the
rotation of the frame, which he always feels. The third term is simply the inward
force his feet must apply if he is to walk in a circle of radius r at speed v, which is
exactly what he is doing in the rotating frame. The middle term is the additional
inward friction force he must apply to balance the outward Coriolis force of 2mωv
(using V ≡ ωr).
Said in an equivalent way, the person on the carousel will write down an F = ma
equation of the form (taking radially inward to be positive),

m
v2

r
=

m(V + v)2

r
− mV 2

r
− 2mV v

r
, or

ma = Ffriction + Fcent + Fcor. (9.17)

We see that the net force he feels is indeed equal to his ma (where a is measured with
respect to his rotating frame).

For cases in between the two special ones above, things aren’t so clear, but that’s
the way it goes. Note that no matter what direction you move on a carousel, the
Coriolis force always points in the same perpendicular direction relative to your
motion. Whether it’s to the right or to the left depends on the direction of the
rotation. But given ω, you’re stuck with the same relative direction of force.
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On a merry-go-round in the night,
Coriolis was shaken with fright.
Despite how he walked,
’Twas like he was stalked
By some fiend always pushing him right.

Let’s do some more examples...

Example 1 (Dropped ball): A ball is dropped from a height h, at a polar angle
θ (measured down from the north pole). How far to the east is the ball deflected, by
the time it hits the ground?
Solution: Note that the ball is indeed deflected to the east, independent of which
hemisphere it is in. The angle between ω and v is π − θ, so the Coriolis force,
−2mω×v, is directed eastward with magnitude 2mωv sin θ, where v = gt is the speed
at time t (t runs from 0 to the usual

√
2h/g).5 The eastward acceleration at time t

is therefore 2ωgt sin θ. Integrating this to obtain the eastward speed (with an initial
eastward speed of 0) gives veast = ωgt2 sin θ. Integrating once more to obtain the
eastward deflection (with an initial eastward deflection of 0) gives deast = ωgt3 sin θ/3.
Plugging in t =

√
2h/g gives

deast = h

(
2
√

2
3

)(
ω

√
h

g

)
sin θ. (9.18)

This is valid up to second-order effects in the small dimensionless quantity ω
√

h/g.
For an everyday value of h, this quantity is indeed small, since ω ≈ 7.3 · 10−5 s−1.

Example 2 (Foucault’s pendulum): This is the classic example of a consequence
of the Coriolis force. It unequivocally shows that the earth rotates. The basic idea
is that due to the rotation of the earth, the plane of a swinging pendulum rotates
slowly, with a calculable frequency.
In the special case where the pendulum is at one of the poles, this rotation is easy to
understand. Consider the north pole. An external observer, hovering above the north
pole and watching the earth rotate, sees the pendulum’s plane stay fixed (with respect
to the distant stars) while the earth rotates counterclockwise beneath it.6 Therefore,
to an observer on the earth, the pendulum’s plane rotates clockwise (viewed from
above). The frequency of this rotation is of course just the frequency of the earth’s
rotation, so the earth-based observer sees the pendulum’s plane make one revolution
each day.
What if the pendulum is not at one of the poles? What is the frequency of the
precession? Let the pendulum be located at a polar angle θ. We will work in the ap-
proximation where the velocity of the pendulum bob is horizontal. This is essentially

5Technically, v = gt isn’t quite correct. Due to the Coriolis force, the ball will pick up a small
sideways velocity component (this is the point of the problem). This component will then produce
a second-order Coriolis force that effects the vertical speed (see Exercise 2). We may, however,
ignore this small effect in this problem.

6Assume that the pivot of the pendulum is a frictionless bearing, so that it can’t provide any
torque to twist the pendulum’s plane.
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true if the pendulum’s string is very long; the correction due to the rising and falling
of the bob is negligible. The Coriolis force, −2mω × v, points in some complicated
direction, but fortunately we are concerned only with the component that lies in the
horizontal plane. The vertical component serves only to modify the apparent force of
gravity and is therefore negligible. (Although the frequency of the pendulum depends
on g, the resulting modification is very small.)
With this in mind, let’s break ω into vertical and horizontal components in a coordi-
nate system located at the pendulum. From Fig. 9.7, we see that

ω

ω

θ

y z

Figure 9.7

ω = ω cos θẑ + ω sin θŷ. (9.19)

We’ll ignore the y-component, because it produces a Coriolis force in the ẑ direction
(since v lies in the horizontal x-y plane). So for our purposes, ω is essentially equal
to ω cos θẑ. From this point on, the problem of finding the frequency of precession
can be done in numerous ways. We’ll present two solutions.

First solution (The slick way): The horizontal component of the Coriolis force
has magnitude

F horiz
cor = | − 2m(ω cos θẑ)× v| = 2m(ω cos θ)v, (9.20)

and it is perpendicular to v(t). Therefore, as far as the pendulum is concerned, it
is located at the north pole of a planet called Terra Costhetica which has rotational
frequency ω cos θ. But as we saw above, the precessional frequency of a Foucault
pendulum located at the north pole of such a planet is simply

ωF = ω cos θ, (9.21)

in the clockwise direction. So that’s our answer.7

Second solution (In the pendulum’s frame): Let’s work in the frame of the
vertical plane that the Foucault pendulum sweeps through. Our goal is to find the
rate of precession of this frame. With respect to a frame fixed on the earth (with axes
x̂, ŷ, and ẑ), we know that this plane rotates with frequency ωF = −ωẑ if we’re at
the north pole (θ = 0), and frequency ωF = 0 if we’re at the equator (θ = π/2). So
if there’s any justice in the world, the general answer has got to be ωF = −ω cos θẑ,
and that’s what we’ll now show.
Working in the frame of the plane of the pendulum is useful, because we can take
advantage of the fact that the pendulum feels no sideways forces in this frame, because
otherwise it would move outside of the plane (which it doesn’t, by definition).
The frame fixed on the earth rotates with frequency ω = ω cos θẑ + ω sin θŷ, with
respect to the inertial frame. Let the pendulum’s plane rotate with frequency ωF =
ωF ẑ with respect to the earth frame. Then the angular velocity of the pendulum’s
frame with respect to the inertial frame is

ω + ωF = (ω cos θ + ωF )ẑ + ω sin θŷ. (9.22)

To find the horizontal component of the Coriolis force in this rotating frame, we
only care about the ẑ part of this frequency. The horizontal Coriolis force therefore
has magnitude 2m(ω cos θ + ωF )v. But in the frame of the pendulum, there is no
horizontal force, so this must be zero. Therefore,

ωF = −ω cos θ. (9.23)

7As mentioned above, the setup isn’t exactly like the one on the new planet. There will be a
vertical component of the Coriolis force for the pendulum on the earth, but this effect is negligible.
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This agrees with eq. (9.21), where we just wrote down the magnitude of ωF .

9.2.4 Azimuthal force: −m(dω/dt)× r

In this section, we will restrict ourselves to the simple and intuitive case where ω
changes only in magnitude (that is, not in direction).8 In this case, the azimuthal
force may be written as

Faz = −mω̇ω̂ × r. (9.24)

This force is easily understood by considering a person standing at rest with respect
to a rotating carousel. If the carousel speeds up, then the person must feel a tan-
gential friction force at his feet if he is to remain fixed on the carousel. This friction
force equals matan, where atan = rω̇ is the tangential acceleration as measured in the
ground frame. But from the person’s point of view in the rotating frame, he is not
moving, so there must be some other mysterious force that balances the friction.
This is the azimuthal force. Quantitatively, when ω̂ is orthogonal to r, we have
|ω̂ × r| = r, so the azimuthal force in eq. (9.24) has magnitude mrω̇. This is the
same as the magnitude of the friction force, as it should be.

What we have here is exactly the same effect that we had with the translation
force on the accelerating train. If the floor speeds up beneath you, then you must
apply a friction force if you don’t want to be thrown backwards with respect to the
floor. If you shut your eyes and ignore the centrifugal force, then you can’t tell if
you’re on a linearly accelerating train, or on an angularly accelerating carousel. The
translation and azimuthal forces both arise from the acceleration of the floor. (Well,
for that matter, the centrifugal force does, too.)

We can also view things in terms of rotational quantities, as opposed to the
linear atan acceleration above. If the carousel speeds up, then a torque must be
applied to the person if he is to remain fixed on the carousel, because his angular
momentum in the fixed frame increases. Therefore, he must feel a friction force at
his feet.

Let’s show that this friction force, which produces the change in angular momen-
tum of the person in the fixed frame, exactly cancels the azimuthal force in the rotat-
ing frame, thereby yielding zero net force in the rotating frame.9 Since L = mr2ω,
we have dL/dt = mr2ω̇ (assuming r is fixed). And since dL/dt = τ = rF , we
see that the required friction force is F = mrω̇. And as we saw above, when ω̂ is
orthogonal to r, the azimuthal force in eq. (9.24) also equals mrω̇, in the direction
opposite to the carousel’s motion.

Example (Spinning ice skater): We have all seen ice skaters increase their angular
speed by bringing their arms in close to their body. This is easily understood in
terms of angular momentum; a smaller moment of inertia requires a larger ω, to keep

8The more complicated case where ! changes direction is left for Problem 9.
9This is basically the same calculation as the one above, with an extra r thrown in.
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L constant. But let’s analyze the situation here in terms of fictitious forces. We
will idealize things by giving the skater massive hands at the end of massless arms
attached to a massless body.10 Let the hands have total mass m, and let them be
drawn in radially.
Look at things in the skater’s frame (which has an increasing ω), defined by the vertical
plane containing the hands. The crucial thing to realize is that the skater always
remains in the skater’s frame (a fine tautology, indeed). Therefore, the skater must
feel zero net tangential force in her frame, because otherwise she would accelerate
with respect to it. Her hands are being drawn in by a muscular force that works
against the centrifugal force, but there is no net tangential force on the hands in the
skater’s frame.
What are the tangential forces in the skater’s frame? (See Fig. 9.8.) Let the hands be

v

Fcor

Faz

Figure 9.8

drawn in at speed v. Then there is a Coriolis force (in the same direction as the spin-
ning) with magnitude 2mωv. There is also an azimuthal force with magnitude mrω̇
(in the direction opposite the spinning, as you can check). Since the net tangential
force is zero in the skater’s frame, we must have

2mωv = mrω̇. (9.25)

Does this relation make sense? Well, let’s look at things in the ground frame. The
total angular momentum of the hands in the ground frame is constant. Therefore,
d(mr2ω)/dt = 0. Taking this derivative and using dr/dt ≡ −v gives eq. (9.25).

A word of advice about using fictitious forces: Decide which frame you are going
to work in (the lab frame or the accelerated frame), and then stick with it. The
common mistake is to work a little in one frame and a little on the other, without
realizing it. For example, you might introduce a centrifugal force on someone sitting
at rest on a carousel, but then also give her a centripetal acceleration. This is
incorrect. In the lab frame, there is a centripetal acceleration (caused by the friction
force) and no centrifugal force. In the rotating frame, there is a centrifugal force
(which cancels the friction force) and no centripetal acceleration (because the person
is sitting at rest on the carousel, consistent with the fact that the net force is zero).
Basically, if you ever mention the words “centrifugal” or “Coriolis”, etc., then you
had better be working in an accelerated frame.

10This reminds me of a joke about a spherical cow...
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9.3 Exercises

Section 9.2: The fictitious forces

1. Magnitude of geff *
What is the magnitude of geff? Give you answer to the leading-order correction
in ω.

2. Corrections to gravity **
A mass is dropped from rest from a point directly above the equator. Let the
initial distance from the center of the earth be R, and let the distance fallen
be d. If we consider only the centrifugal force, then the correction to g is
ω2(R− d). There is, however, also a second-order Coriolis effect. What is the
sum of these corrections?11

3. Southern deflection **
A ball is dropped from a height h (small compared to the radius of the earth),
at a polar angle θ. How far to the south (in the northern hemisphere) is it
deflected away from the geff direction, by the time it hits the ground? (This
is a second order Coriolis effect.)

4. Oscillations across equator *
A bead lies on a frictionless wire which lies in the north-south direction across
the equator. The wire takes the form of an arc of a circle; all points are the
same distance from the center of the earth. The bead is released from rest
at a short distance from the equator. Because geff does not point directly
toward the earth’s center, the bead will head toward the equator and undergo
oscillatory motion. What is the frequency of these oscillations?

5. Roche limit *
Exercise 4.29 dealt with the Roche limit for a particle falling in radially toward
a planet. Show that the Roche limit for a object in a circular orbit is

d = R

(
3ρp

ρr

)1/3

. (9.26)

6. Spinning bucket **
An upright bucket of water is spun at frequency ω around the vertical axis. If
the water is at rest with respect to the bucket, find the shape of the water’s
surface.

7. Coin on turntable ***
A coin stands upright at an arbitrary point on a rotating turntable, and rotates
(without slipping) with the required speed to make its center remain motionless

11g will also vary with height, but let’s not worry about that here.
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in the lab frame. In the frame of the turntable, the coin will roll around in a
circle with the same frequency as that of the turntable. In the frame of the
turntable, show that

(a) F = dp/dt, and

(b) τ = dL/dt.

8. Precession viewed from rotating frame ***
Consider a top made of a wheel with all its mass on the rim. A massless rod
(perpendicular to the plane of the wheel) connects the CM to the pivot. Initial
conditions have been set up so that the top undergoes precession, with the rod
always horizontal.

In the language of Figure 8.27, we may write the angular velocity of the top
as ω = Ωẑ + ω′x̂3 (where x̂3 is horizontal here). Consider things in the frame
rotating around the ẑ-axis with angular speed Ω. In this frame, the top spins
with angular speed ω′ around its fixed symmetry axis. Therefore, in this frame
τ = 0, because there is no change in L.

Verify explicitly that τ = 0 (calculated with respect to the pivot) in this
rotating frame (you will need to find the relation between ω′ and Ω). In other
words, show that the torque due to gravity is exactly canceled by the torque do
to the Coriolis force. (You can easily show that the centrifugal force provides
no net torque.)
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9.4 Problems

Section 9.2: The fictitious forces

1. geff vs. g *
For what θ is the angle between mgeff and g maximum?

2. Longjumping in geff *
If a longjumper can jump 8 meters at the north pole, how far can he jump
at the equator? (Ignore effects of wind resistance, temperature, and runways
made of ice. And assume that the jump is made in the north-south direction
at the equator, so that there is no Coriolis force.)

3. Lots of circles **

(a) Two circles in a plane, C1 and C2, each rotate with frequency ω (relative
to an inertia frame). See Fig. 9.9. The center of C1 is fixed in an

ω

ω

C

C1

2

Figure 9.9

inertial frame, and the center of C2 is fixed on C1. A mass is fixed on
C2. The position of the mass relative to the center of C1 is R(t). Find
the fictitious force felt by the mass.

(b) N circles in a plane, Ci, each rotate with frequency ω (relative to an
inertia frame). See Fig. 9.10. The center of C1 is fixed in an inertial

ω
ω

ω

ω
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frame, and the center of Ci is fixed on Ci−1 (for i = 2, . . . , N). A mass
is fixed on CN . The position of the mass relative to the center of C1 is
R(t). Find the fictitious force felt by the mass.

4. Which way down? *
You are floating high up in a balloon, at rest with respect to the earth. Give
three quasi-reasonable definitions for which point on the ground is right “be-
low” you.

5. Mass on a turntable *
A mass rests motionless with respect to the lab frame, while a frictionless
turntable rotates beneath it. The frequency of the turntable is ω, and the
mass is located at radius r. In the frame of the turntable, what are the forces
acting on the mass?

6. Released mass *
A mass is bolted down to a frictionless turntable. The frequency of rotation is
ω, and the mass is located at a radius a. The mass is released. Viewed from
an inertial frame, it travels in a straight line. In the rotating frame, what path
does the mass take? Specify r(t) and θ(t), where θ is the angle with respect
to the initial radius.
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7. Coriolis circles *
A puck slides with speed v on frictionless ice. The surface is “level”, in the
sense that it is orthogonal to geff at all points. Show that the puck moves in a
circle, as seen in the earth’s rotating frame. What is the radius of the circle?
What is the frequency of the motion? Assume that the radius of the circle is
small compared to the radius of the earth.

8. Shape of the earth ***
The earth bulges slightly at the equator, due to the centrifugal force in the
earth’s rotating frame. Show that the height of a point on the earth (relative
to a spherical earth), is given by

h = R

(
Rω2

6g

)
(3 sin2 θ − 2), (9.27)

where θ is the polar angle (the angle down from the north pole), and R is the
radius of the earth.

9. Changing ω’s direction ***
Consider the special case where a reference frame’s ω changes only in direction
(and not in magnitude). In particular, consider a cone rolling on a table, which
is a natural example of such a situation.

The instantaneous ω for a rolling cone is its line of contact with the table, be-
cause these are the points that are instantaneously at rest. This line precesses
around the origin. Let the frequency of the precession be Ω. Let the origin of
the cone frame be the tip of the cone. This point remains fixed in the inertial
frame.

In order to isolate the azimuthal force, consider the special case of a point
P that lies on the instantaneous ω and which is motionless with respect to
the cone (see Fig. 9.11). From eq. (9.11), we then see that the centrifugal,ω

r

Q

P

β
β

Figure 9.11

Coriolis, and translation forces are zero. The only remaining fictitious force is
the azimuthal force, and it arises from the fact that P is accelerating up away
from the table.

(a) Find the acceleration of P .

(b) Calculate the azimuthal force on a mass m located at P , and show that
the result is consistent with part (a).



9.5. SOLUTIONS IX-17

9.5 Solutions

1. geff vs. g
The forces mg and Fcent are shown in Fig. 9.12. The magnitude of Fcent is mRω2 sin θ,

Fcent

Fcent
ω

eff

mR

mg

mg

θ
θ

θ θ

φ

2sin cos

Figure 9.12

so the component of Fcent perpendicular to mg is mRω2 sin θ cos θ = mRω2(sin 2θ)/2.
For small Fcent, maximizing the angle between geff and g is equivalent to maximizing
this perpendicular component. Therefore, we obtain the maximum angle when

θ =
π

4
. (9.28)

The maximum angle turns out to be φ ≈ sinφ ≈
(
mRω2(sin π

2 )/2
)
/mg = Rω2/2g ≈

0.0017, which is about 0.1◦. For this θ = π/4 case, the line along geff misses the
center of the earth by about 10 km, as you can show.

Remark: The above method works only when the magnitude of Fcent is much smaller than
mg; we dropped higher order terms in the above calculation. One way of solving the problem
exactly is to break Fcent into components parallel and perpendicular to g. If φ is the angle
between geff and g, then from Fig. 9.12 we have

tan φ =
mRω2 sin θ cos θ

mg −mRω2 sin2 θ
. (9.29)

We can then maximize φ by taking a derivative. But be careful if Rω2 > g, in which case
maximizing φ doesn’t mean maximizing tan φ. We’ll let you work this out, and instead we’ll
give the following slick geometric solution.

Draw the Fcent vectors, for various θ, relative to mg. The result looks like Fig. 9.13. Since Fcent

eff
mg mg

θ

φ

Figure 9.13

the lengths of the Fcent vectors are proportional to sin θ, you can show that the tips of the
Fcent vectors form a circle. The maximum φ is therefore achieved when geff is tangent to
this circle, as shown in Fig. 9.14. In the limit where g À Rω2 (that is, in the limit of a

eff
mg mg
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φ

Fcent

ωmR 2____
2

Figure 9.14

small circle), we want the point of tangency to be the rightmost point on the circle, so the
maximum φ is achieved when θ = π/4, in which case sin φ ≈ (Rω2/2)/g. But in the general
case, Fig. 9.14 shows that the maximum φ is given by

sin φmax =
1
2
mRω2

mg − 1
2
mRω2

. (9.30)

In the limit of small ω, this is approximately Rω2/2g, as above.

The above reasoning holds only if Rω2 < g. In the case where Rω2 > g (that is, the circle

extends above the top end of the mg segment), the maximum φ is simply π, and it is achieved

at θ = π/2. ♣
2. Longjumping in geff

Let the jumper take off with speed v, at an angle θ. Then geff(t/2) = v sin θ tells us
that the time in the air is t = 2v sin θ/geff . The distance traveled is therefore

d = vxt = vt cos θ =
2v2 sin θ cos θ

geff
=

v2 sin 2θ

geff
. (9.31)

This is maximum when θ = π/4, as we well know. So we see that d ∝ 1/
√

geff . Taking
geff ≈ 10 m/s2 at the north pole, and geff ≈ (10− 0.03) m/s2 at the equator, we find
that the jump at the equator is approximately 1.0015 times as long as the one on the
north pole. So the longjumper gains about one centimeter.

Remark: For a longjumper, the optimal angle of takeoff is undoubtedly not π/4. The

act of changing the direction abruptly from horizontal to such a large angle would entail
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a significant loss in speed. The optimal angle is some hard-to-determine angle less than

π/4. But this won’t change our general d ∝ 1/
√

geff result (which follows from dimensional

analysis), so our answer still holds. ♣
3. Lots of circles

(a) The fictitious force, Ff , on the mass has an Fcent part and an Ftrans part, because
the center of C2 is moving. So the fictitious force is

Ff = mω2r2 + Ftrans, (9.32)

where r2 is the position of the mass in the frame of C2. But Ftrans, which arises
from the acceleration of the center of C2, is simply the centrifugal force felt by
any point on C1. Therefore,

Ftrans = mω2r1, (9.33)

where r1 is the position of the center of C2, in the frame of C1. Substituting
this into eq. (9.32) gives

Ff = mω2(r2 + r1)
= mω2R(t). (9.34)

(b) The fictitious force, Ff , on the mass has an Fcent part and an Ftrans part, because
the center of the Nth circle is moving. So the fictitious force is

Ff = mω2rN + Ftrans,N , (9.35)

where rN is the position of the mass in the frame of CN . But Ftrans,N is simply
the centrifugal force felt by a point on the (N − 1)st circle, plus the translation
force coming from the movement of the center of the (N−1)st circle. Therefore,

Ftrans,N = mω2rN−1 + Ftrans,N−1. (9.36)

Substituting this into eq. (9.35) and successively rewriting the Ftrans,i terms in
a similar manner, gives

Ff = mω2(rN + rN−1 + · · ·+ r1)
= mω2R(t). (9.37)

The main point in this problem is that Fcent is linear in r.

Remark: There is actually a much easier way to see that Ff = mω2R(t). Since all the

circles rotate with the same ω, they may as well be glued together. Such a rigid setup would

indeed yield the same ω for all the circles. This is similar to the moon rotating once on its

axis for every revolution is makes around the earth, thereby causing the same side to always

face the earth. It is then clear that the mass simply moves in a circle at frequency ω, yielding

a fictitious centrifugal force of mω2R(t). And we see that the radius R is in fact constant.

♣
4. Which way down?

Here are three possible definitions of the point “below” you on the ground: (1) The
point that lies along the line between you and the center of the earth, (2) The point
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where a hanging plumb bob rests, and (3) The point where a dropped object hits the
ground.

The second definition is the most reasonable, because it defines the upward direction
in which buildings are constructed. It differs from the first definition due to the
centrifugal force which makes geff point in a slightly different direction from g. The
third definition differs from the second due to the Coriolis force. The velocity of the
falling object produces a Coriolis force which causes an eastward deflection.

Note that all three definitions are equivalent at the poles. Additionally, definitions 1
and 2 are equivalent at the equator.

5. Mass on turntable

In the lab frame, the net force on the mass is zero, because it is sitting at rest. (The
normal force cancels the gravitational force.) But in the rotating frame, the mass
travels in a circle of radius r, with frequency ω. So in the rotating frame there must
be a force of mω2r inward to account for the centripetal acceleration. And indeed, the
mass feels a centrifugal force of mω2r outward, and a Coriolis force of 2mωv = 2mω2r
inward, which sum to the desired force (see Fig. 9.15).
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Remark: The net inward force in this problem is a little different from that for someone

swinging around in a circle in an inertial frame. If a skater maintains a circular path by

holding onto a rope whose other end is fixed, she has to use her muscles to maintain the

position of her torso with respect to her arm, and her head with respect to her torso, etc.

But if a person takes the place of the mass in this problem, she needs to exert no effort to

keep her body moving in the circle (which is clear, when looked at from the inertial frame),

because each atom in her body is moving at (essentially) the same speed and radius, and

therefore feels the same Coriolis and centrifugal forces. So she doesn’t really feel this force,

in the same sense that someone doesn’t feel gravity when in free-fall with no air resistance.

♣

6. Released mass

Let the x′- and y′-axes of the rotating frame coincide with the x- and y-axes of
the inertial frame at the moment the mass is released (at t = 0). Let the mass
initially be located on the y′-axis. Then after a time t, the situation looks like that
in Fig. 9.16. The speed of the mass is v = aω, so it has traveled a distance aωt.
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The angle that its position vector makes with the inertial x-axis is therefore tan−1 ωt,
with counterclockwise taken to be positive. Hence, the angle that its position vector
makes with the rotating y′-axis is θ(t) = −(wt− tan−1 ωt). And the radius is simply
r(t) = a

√
1 + ω2t2. So for large t, r(t) ≈ aωt and θ(t) ≈ −wt + π/2, which make

sense.

7. Coriolis circles

By construction, the normal force from the ice exactly cancels all effects of the grav-
itational and centrifugal forces in the rotating frame of the earth. We therefore need
only concern ourselves with the Coriolis force. This force equals Fcor = −2mω × v.

Let the angle down from the north pole be θ; we assume the circle is small enough
so that θ is essentially constant throughout the motion. Then the component of the
Coriolis force that points horizontally along the surface has magnitude f = 2mωv cos θ
and is perpendicular to the direction of motion. (The vertical component of the
Coriolis force will simply modify the required normal force.) Because this force is
perpendicular to the direction of motion, v does not change. Therefore, f is constant.
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But a constant force perpendicular to the motion of a particle produces a circular
path. The radius of the circle is given by

2mωv cos θ =
mv2

r
=⇒ r =

v

2ω cos θ
. (9.38)

The frequency of the circular motion is

ω′ =
v

r
= 2ω cos θ. (9.39)

Remarks: To get a rough idea of the size of the circle, you can show (using ω ≈ 7.3·10−5 s−1)
that r ≈ 10 km when v = 1m/s and θ = 45◦. Even the tiniest bit of friction will clearly
make this effect essentially impossible to see.

For the θ ≈ π/2 (that is, near the equator), the component of the Coriolis force along the
surface is negligible, so r becomes large, and ω′ goes to 0.

For the θ ≈ 0 (that is, near the north pole), the Coriolis force essentially points along the

surface. The above equations give r ≈ v/(2ω), and ω′ ≈ 2ω. For the special case where the

center of the circle is the north pole, this ω′ ≈ 2ω result might seem incorrect, because you

might want to say that the circular motion should be achieved by having the puck remain

motionless in the inertial fame, while the earth rotates beneath it (thus making ω′ = ω).

The error in this reasoning is that the “level” earth is not spherical, due to the non-radial

direction of geff . If the puck starts out motionless in the inertial frame, it will be drawn

toward the north pole, due to the component of the gravitational force along the “level”

surface. In order to not fall toward the pole, the puck needs to travel with frequency ω

(relative to the inertial frame) in the direction opposite12 to the earth’s rotation.13 The

puck therefore moves at frequency 2ω relative to the frame of the earth. ♣
8. Shape of the earth

In the reference frame of the earth, the forces on an atom at the surface are: earth’s
gravity, the centrifugal force, and the normal force from the ground below it. These
three forces must sum to zero. Therefore, the sum of the gravity plus centrifugal forces
must be normal to the surface. Said differently, the gravity-plus-centrifugal force must
have no component along the surface. Said in yet another way, the potential energy
function derived from the gravity-plus-centrifugal force must be constant along the
surface. (Otherwise, a piece of the earth would want to move along the surface, which
would mean we didn’t have the correct surface to begin with.)
If x is the distance from the earth’s axis, then the centrifugal force is Fc = mω2x,
directed outward. The potential energy function for this force is Vc = −mω2x2/2,
up to an arbitrary additive constant. The potential energy for the earth’s gravitation
force is simply mgh. (We’ve arbitrarily chosen the original spherical surface have zero
potential; any other choice would add on an irrelevant constant. Also, we’ve assumed
that the slight distortion of the earth won’t make the mgh result invalid. This is true
to lowest order in h/R, which you can demonstrate if you wish.)
The equal-potential condition is therefore

mgh− mω2x2

2
= C, (9.40)

12Of course, the puck could also move with frequency ω in the same direction as the earth’s
rotation. But in this case, the puck simply sits at one place on the earth.

13The reason for this is the following. In the rotating frame of the puck, the puck feels the
same centrifugal force that it would feel if it were at rest on the earth, spinning with it. The puck
therefore happily stays at the same θ value on the “level” surface, just as a puck at rest on the
earth does.
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where C is a constant to be determined. Using x = r sin θ, we obtain

h =
ω2r2 sin2 θ

2g
+ B, (9.41)

where B ≡ C/(mg) is another constant. We may replace the r here with the radius
of the earth, R, with negligible error.
Depending what the constant B is, this equation describes a whole family of surfaces.
We may determine the correct value of B by demanding that the volume of the earth
be the same as it would be in its spherical shape if the centrifugal force were turned
off. This is equivalent to demanding that the integral of h over the surface of the
earth is zero. The integral of (a sin2 θ+b) over the surface of the earth is (the integral
is easy if we write sin2 θ as 1− cos2 θ)

∫ π

0

(
a(1− cos2 θ) + b

)
2πR2 sin θ dθ =

∫ π

0

(− a cos2 θ + (a + b)
)
2πR2 sin θ dθ

= 2πR2

(
a cos3 θ

3
− (a + b) cos θ

) ∣∣∣
π

0

= 2πR2

(
−2a

3
+ 2(a + b)

)
. (9.42)

Hence, we need b = −(2/3)a for this integral to be zero. Plugging this result into eq.
(9.41) gives

h = R

(
Rω2

6g

)
(3 sin2 θ − 2), (9.43)

as desired.

9. Changing ω’s direction

(a) Let Q be the point which lies on the axis of the cone and which is directly above
P (see Fig. 9.17). If P is a distance r from the origin, and if the half-angle of
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the cone is β, then Q is a height y = r tanβ above P .
Consider the situation an infinitesimal time t later. Let P ′ be the point that
is now directly below Q (see Fig. 9.17). The angular speed of the cone is ω,
so Q moves horizontally at a speed vQ = ωy = ωr tan β. Therefore, in the
infinitesimal time t, we see that Q moves a distance ωyt to the side.
This distance ωyt is also (essentially) the horizontal distance between P and P ′.
Therefore, a little geometry tells us that P is now a distance

h(t) = y −
√

y2 − (ωyt)2 ≈ (ωt)2y
2

=
1
2
(ω2y)t2 (9.44)

above the table. Since P started on the table with zero speed, this means that P
is undergoing an acceleration of ω2y in the vertical direction. A mass m located
at P must therefore feel a force FP = mω2y in the upward direction, if it is to
remain motionless with respect to the cone.

(b) The precession frequency Ω (which is how fast ω swings around the origin) is
equal to the speed of Q divided by r. This is true because Q is always directly
above ω, so it moves in a circle of radius r around the z-axis. Therefore, Ω
has magnitude vQ/r = ωy/r, and it points in the downward vertical direction
(for the situation shown in Fig. 9.11). Hence, dω/dt = Ω × ω has magnitude
ω2y/r, and it points in the horizontal direction (out of the page). Therefore,
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Faz = −m(dω/dt) × r has magnitude mω2y, and it points in the downward
vertical direction.
A person of mass m at point P therefore interprets the situation as, “I am not
accelerating with respect to the cone. Therefore, the net force on me is zero.
And indeed, the upward normal force FP from the cone, with magnitude mω2y,
is exactly balanced by the mysterious downward force Faz, also with magnitude
mω2y.”
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