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SUMMARY

A mathematical definition of an adiabatic invariant is proposed. We find out an adiabatic invariant
for a linear oscillator in an external variable field using this definition. Estimates of changes of this
invariant are proved. This formula contains a denominator which decreases when the differences of
frequencies tend to zero (resonance).

§ 1. MAIN RESULTS

An adiabatic invariant of the physical system is called the physical quantity that changes
small, when the parameters of the system vary slowly. In other words the adiabatic invariant is
an approximate first integral of the system. In [1] a connection between approximate integrals of
energy and Wronskians of approximate solutions has been shown. Using this connection we find
out an adiabatic invariant for a linear oscillator in external variable field and estimate its changes.

It is known (see, for example [2]) that for linear harmonic oscillator

d2x

dt2
+ ω2(εt)x = 0, t ∈ R,

an adiabatic invariant is the quantity

J(t, ε) =
ẋ2 + ω2x2

2ω
=

E

ω
,

where x is a solution of the equation with Cauchy data, independent of ε. The full change of
J(t, ε),

J(ε) = J(∞, ε)− J(−∞, ε)

may be estimated as
J(ε) = O(εm), ε → 0.

Here m is a natural number which depends on ω. Note that m = ∞ if ω is a holomorphic function
in some neighbourhood of the real axis.

We consider the following differential equation of linear oscillator in external variable field:

ẍ + ω2
1(εt)x = cos

t∫
0

ω2(εs)ds, t ∈ R, (1.1)
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where ẍ = d2x
dt2

and ε > 0 is a small parameter.
Definition. We call adiabatic invariant of (1.1) the quantity

J(t, ε) = I(t, x− x′, ε) =| W (x− x′, ϕ) |2,

where x and x′ are exact solutions of (1.1) with bounded by ε Cauchy data and ϕ is an asymptotic
solution of the corresponding homogeneous equation.

Let frequencies ω1, ω2 satisfy the following conditions:
1◦ ω1(τ) ∈ C4(R), ω1(τ) > 0, and there exist limits ω1(±∞) > 0.
2◦ ω2(τ) ∈ C2(R), ω2

2(τ) 6= ω2
1(τ), τ ∈ R, there exist limits ω2(±∞), and ω2

2(±∞) 6= ω2
1(±∞).

3◦
∞∫

−∞

ω
(k)
1 (τ)dτ < ∞, k = 1, . . . , 4

∞∫
−∞

| ω(k)
2 (τ) | dτ < ∞, k = 1, 2.

In this paper we find out an adiabatic invariant

J(t, ε) =
E

ω1

(
1− ω2

2

ω2
1

) , (1.2)

where

E =

(1− ω2
2

ω2
1

)
ẋ +

ω2

ω2
1

sin

t∫
0

ω2(εs)ds

2

+ ω2
1

(1− ω2
2

ω2
1

)
x− 1

ω2
1

cos

t∫
0

ω2(εs)ds

2

(1.3)

x = x(t, ε) is a solution of (1.1) with bounded by ε Cauchy data. The changes of this adiabatic
invariant satisfy the following estimates:
1) there exist C, ε′, such that

| J(t1, ε)− J(t2, ε) |≤ Cε (1.4)

for every t1, t2 ∈ (−∞;∞), 0 < ε < ε′,
2)

J(ε) = J(∞, ε)− J(−∞, ε) = O(ε), when ε → 0. (1.5)

Evidently the quantity E is the first integral of (1.1) when ωm = const. We also show that the
full change of J(t, ε), J(ε) = J(∞, ε)−J(−∞, ε) is exponentially small if the following additional
conditions are satisfied:
4◦ The function ω1(τ) is holomorphic and ω1(τ) 6= 0 in the one-connected domain D of the complex
plane τ, which contains the real axis. By the function

S(0, τ) =

τ∫
0

ω1(s)ds

the domain D is one-to-one mapped onto the band Ha : | ImS |< a,
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5◦ ∫
l

(| ω̇1(t) |2 + | ω̈1(t) |) | dt |< ∞,

where the integrals are taken over lines ImS(0, t) = c, c ∈ (−a, a).

§ 2. ASYMPTOTIC SOLUTIONS OF THE EQUATION (1.1)

We can rewrite (1.1) in variable τ = εt

v̈ +
ω2

1(τ)

ε2
v =

1

ε2
cos

1

ε

τ∫
0

ω2(s)ds

 , τ ∈ R, (2.1)

where v = v(τ, ε) = x(t, ε) and v̈ = d2v
dτ2 . First we will find the solutions of the auxiliary equation

z̈ +
ω2

1(τ)

ε2
z =

1

ε2
exp

 i

ε

τ∫
0

ω2(s)ds

 , τ ∈ R. (2.2)

The linearly independent solutions of the corresponding homogeneous equation

Pu = ü +
ω2

1(τ)

ε2
u = 0, τ ∈ R,

with their derivatives can be represented in the following form (see, for example [3]):

u
±,(k−1)
j = ũ

(k−1)
j (1 + ε2ρ±j,k), j, k = 1, 2,

where ũj = ω
−1/2
1 exp

 τ∫
0

(
±i

ω1

ε
+ ε

3ω̇2
1 − 2ω1ω̈1

8ω3
1

)
ds

 ,

ρ±jk(τ, ε) are bounded for τ ∈ (−∞;∞), ε > 0 and ρ±jk → 0 when τ → ±∞ for every fixed ε. The
functions

z±0 =

τ∫
0

u±1 (s, ε)u±2 (τ, ε)− u±1 (τ, ε)u±2 (s, ε)

ε2W (s, u±1 , u±2 )
exp

 i

ε

s∫
0

ω2(l)dl

 ds

are the solutions of (2.2). Here W (s, u±1 , u±2 ) = u±1 u̇±2 − u±2 u̇±1 are the Wronskians of the solutions
u±1 (s, ε) and u±2 (s, ε). Using 1◦ − 3◦ and the expressions (see [3])

W (s, u±1 , u±2 ) = −2i

ε
,
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c | ε2ρ±jk(τ, ε) |≤

exp

∞∫
τ

2∑
q,r=1

| ũrPũqW
−1(s, ũ1, ũ2) | ds

− 1,

P ũq =

[
±iε

d

ds

(
3ω̇2

1 − 2ω1ω̈1

8ω3
1

)
± ε

ω̇1

iω1

3ω̇2
1 − 2ω1ω̈1

8ω3
1

− ε2

(
3ω̇2

1 − 2ω1ω̈1

8ω3
1

)2
]

ũq,

τ∫
0

exp(θj)ds =
exp θj

θ̇j

∣∣∣∣∣
τ

0

+
θ̈j exp θj

θ̇3
j

∣∣∣∣∣
τ

0

−
τ∫

0

d

ds

(
θ̈j

θ̇3
j

)
exp(θj)ds,

where c > 0, and

θj =
i

ε

s∫
0

ω2dl − 1

2
ln ω1 ± i

s∫
0

(
ω1

ε
+ ε

3ω̇2
1 − 2ω1ω̈1

8ω3
1

)
dl,

we obtain

z±0 =
i

2ε
u±2 (τ, ε)

∫ τ

0

exp θ1ds + ε2

 ∞∫
0

−
∞∫

τ

 ũ1(s, ε)ρ
±
11(s, ε)ds

−
− i

2ε
u±1 (τ, ε)

∫ τ

0

exp θ2ds + ε2

 ∞∫
0

−
∞∫

τ

 ũ2(s, ε)ρ
±
21(s, ε)ds

 ,

or

z±0 = a±1 u±1 + a±2 u±2 +
1

ω2
1 − ω2

2

exp

 i

ε

τ∫
0

ω2ds

+ εq±1 ,

εż±0 = εa±1 u̇±1 + εa±2 u̇±2 +
iω2

ω2
1 − ω2

2

exp

 i

ε

τ∫
0

ω2ds

+ εq±2 ,

where a±i depend on ε, q−j , q+
j are bounded for τ ∈ (−∞,∞), ε > 0 and lim

τ→±∞
q±j (τ, ε) = 0.

Consequently there exist solutions of (2.1) which have the form

v±0 =
1

ω2
1 − ω2

2

cos

1

ε

τ∫
0

ω2ds

+ εReq±1 ,

εv̇±0 = − ω2

ω2
1 − ω2

2

sin

1

ε

τ∫
0

ω2ds

+ εReq±2 .
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§ 3. ESTIMATES OF CHANGES OF J(t, ε)

Solutions v of (2.1) can be written in the forms

v = a−u−1 + b−u−2 + v−0 = a+u+
1 + b+u+

2 + v+
0 (3.1)

where the coefficients a±, b± depend on ε. Differentiating (3.1) and solving the obtained systems
with respect to a+, b+ and a−, b−, correspondingly, it is easy to check that these coefficients are
bounded for a solution of (1.1) with bounded by ε Cauchy data.
Theorem. If the conditions 1◦−3◦ are fulfilled, then the quantity (1.2) with bounded Cauchy data
x0 = x(0, ε), x1 = ẋ(0, ε) is an adiabatic invariant of (1.1) and its changes satisfy the estimates
(1.4), (1.5). In addition if 4◦ − 5◦ are satisfied, then

J(ε) = J(∞, ε)− J(−∞, ε) = O(exp(−bε−1)),

where b is an arbitrary number, such that 0 < b < a.
Proof. From (3.1) we have

iε

2
W (v − v±0 , u±2 ) =

=
ũ±2
2

ω1

v − 1

ω2
1 − ω2

2

cos
1

ε

τ∫
0

ω2ds

− i

εv̇ +
ω2

ω2
1 − ω2

2

sin
1

ε

τ∫
0

ω2ds

+ εh±2 = a±

iε

2
W (u±1 , v − v±0 ) =

=
ũ±1
2

ω1

v − 1

ω2
1 − ω2

2

cos
1

ε

τ∫
0

ω2ds

+ i

εv̇ +
ω2

ω2
1 − ω2

2

sin
1

ε

τ∫
0

ω2ds

+ εh±1 = b±,

where h−j (τ, ε), h+
j (τ, ε) are bounded for τ ∈ (−∞;∞), ε > 0 and lim

τ→±∞
h±j (τ, ε) = 0. Thus we

have
J(t, ε) = a−b− + εh− = a+b+ + εh+, (3.2)

where h±(t, ε) are bounded and lim
t→±∞

h±j (t, ε) = 0. The estimate (1.4) immediately follows from

(3.2). As it was mentioned above the coefficients a±, b± are bounded. From results of [4] it follows
that

a+b+ − a−b− = O(ε),

if 1◦ − 3◦, are fulfilled and
a+b+ − a−b− = O(exp(−bε−1)),

if 1◦ − 5◦ are fulfilled. The theorem is proved.
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