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1. Introduction. Poisson’s inequality

The fundamental Poisson’s formula characterizes solutions of the Dirichlet prob-
lem by their averages over circles (see [7]). Many generalizations of this formula have
been proven (see for example [2, 3, 5, 6]), including extensions to partial differential
equations on manifolds. In this paper we prove the version of Poisson’s formula on a

time scale, introduced by Hilger in [4].

Consider the Dirichlet problem in a circle with radius r¢ > 0

A
uAA(r, ©) + Y U((Zi)gp) + uiif(zﬂ;;p) =0, 0<r<ry, 0<p<2r (1.1)
u(ro,p) = fp), 0<¢<2m (1.2)

Here u®(r,.) is the delta derivative (see [4, 1]) with respect to the variable 7 on
a time scale T. Also, u,(-,¢) denotes the partial derivative of the function u(r, ¢) :
T x [0,27] — R. The forward jump operator is defined by o(r) = inf{s € T, s > r},
where r € T.

The set of functions p(r, ¢) : T x [0, 2] — R that are rd-continuous in r € T and
continuous in the variable ¢ € [0,27] will be denoted by C.4. The set of functions
p(r, @) such that their n-th delta derivative with respect to the variable r exists and
is rd-continuous for r € T, and their m-th derivative with respect to ¢ € [0, 27| exists

and is continuous on [0, 27] is denoted by CT(Z’m). We say that the real-valued function

Received November 11, 2011 1083-2564 $15.00 ©Dynamic Publishers, Inc.



416 G. HOVHANNISYAN
p(r, ) is regressive on T x [0, 27 if 1+ pu(r)p(r,¢) # 0 for all r € T, ¢ € [0, 27]. The
set of regressive functions on T x [0, 27| that belong to C,4 is denoted by R.
If 14 pp # 0, then the (generalized) exponential function e,(¢,) is the unique
solution of the initial value problem
w2 =p(t)a(t), a(t) =1,

and is given by the formula (see [4, 1])

! Log(1
ep(t, to) = exp {/ lim o9l + qp(S)>As (1.3)
to aN\p(s) q

where Log is the principal logarithmic function.

The set R along with the addition & defined by

pHq:=p+q+ upg (1.4)

forms an Abelian group called the regressive group (see [1].) By R™™ we denote the

set of regressive functions that belong to CT(Z’m). Note that (see [1])

ep(r,70)

b—q
eq(r,70)

1+ pg

6p(T, TO)QQ(Tv TO) = epéBQ(rv TO)? = QPGII(Tv TO)? POq= (15)

Define the auxiliary functions

A(r) = exp / L{i%) (@)}Ay, B(r):f: f:()hmq\lu(y)(é)Ay, (1.6)

n=2 n

K(r) :exp/rro [ lim (M)] Ay. (1.7)

a\(y) q
Note that B(r) is the analogue of the shifted Riemann zeta function over the real.

and

Theorem 1.1. Assume

0 1 oA
/ lim (—) Ay:/ 2V S <. (1.8)
. i) \ g r HY)

Then the solutions u € C’ﬁZ’Z) of the Dirichlet problems (1.1), (1.2) satisfy Poisson’s

imequality
urp) - [ Pas@da < X020 [Fif@pia, )
where
K?*(r)—1

Pl(’f’,Oé>:

2r[(K(r) — 1)2 + 4K (1) sin?((a — ¢) /2)]
is the Poisson kernel.

Remark 1.2. For the continuous time scale we have u(r) — 0, A(r) -0, K(r) —
ro/7T and hence we get Poisson’s formula

1 /2” (r2 —r?) f(a)da

T on re — 2ror cos(a — @) + 12’

u(r; @)
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Example 1.3. Consider the discrete time scale

2 k
le{O o ﬂw--,%}:{tk}zzo, y:tk:ﬂ:ku, k=0,...,n (1.12)
n

n’ n
Then
r r mr,
a(t):t%—go, u(t)zﬁ, r:TO, m> 1. (1.13)
By taking f(y) = %ln(l + 1/y) we get
o — e 1
K=o [ fwdy=en S uosw =1 (1+7). 0
n—1 nl g o0
A(r) = exp];mu /k) = 115 B(r) = an—". (1.15)
Assumption (1.8) is equivalent to n —m =n — 2= > 1 or ry > r. Thus (1.9) gives
i)~ [ Pl (aial < @ [

Or form <n —1,

27
u(r,gp)—/ Pi(r,a)f(a)da
0

S%Z ( %)/ a)|da,  (1.17)

k=m

where the Poisson kernel P; is given by

P = i - 22;1% (1+%)2_1 (1.18)
27 ([T, (14 2) = 1)+ 4T, (14 4) sin®((0 — )/2).
2. Proof

By seeking a solution of (1.1) in the form of u = R(r)®(p) we get from (1.1)

RA2(r)®(p) + RAg()Tq;(¢) + R(:;q():)(sp) = 0. (2.1)

Separating the variables leads to

ro(r)RA2(r) T’RA(T)_ " (p)

RO R0~ 9(p) =n”" = const, (2.2)
or RAA(T’) RA g
ro(r) R0 + TR(T’) n® =0, (2.3)
and
(p) = —n*®(yp). (2.4)

Solutions of (2.4) are given by

D, () = a,sin(np) + b, cos(ny), n=0,1,2,....
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We seek solutions of (2.3) in the form of the exponential function on a time scale
R(r) = ex/r(r,10) (see (1.3)). A substitution of R(r) in (2.3) gives

M-A+A=—n?=0, =\=-n l=n (2.5)

Ignoring solutions corresponding to Ay = —n, (since e_,/,(r) could be unbounded

as r — 0) we get R(r) = R,(r) = €,.(r,70), and

u(r,p) = Ru(r)@u(¢) =Y _[an sin(ng) + by, cos(np)]en» (r, o). (2.6)
n=0 n=0
From the boundary condition (1.2) we have
fle) = Z[an sin(ny) + by, cos(np)] = by + Z[an sin(ny) + b, cos(np)].  (2.7)
n=0 n=1

Multiplying (2.7) by sin(me), cos(mep), m =0,£1,42,--- and then integrating

each corresponding expression yields to

2m 2m
/ f(p)sin(mep)dy = am/ sin?(me)dy = a,,
0 0

27 27
f(p) cos(mp)dp = by, / cos2(m<p)dg0 = by, 7,
0 0
and
1 27 1 27
A = —/ f(a)sin(ma)da, by, = —/ f(a) cos(ma)da, m=1,2,...,
™ Jo ™ Jo
1 27
by = o ), f(a)da.

Substitution of these formulas in (2.6) gives

u(r, p) = i (M /027r f(a@)[sin(na) sin(np) + cos(na) cos(ngo)]doz)

n=1 @
1 2T
+§/0 fla)da
() =3 20T 7 ) costna — nghdat = [ Fla)d
u 7’,90 = 2 - ; ) COS{nNo nSO 0 27‘(‘ ; o jac
or 9
u(r, ) = fla)P(r, ¢, a)da, (2.8)
0
where

n=1

P(r,p,0) = % (% + ) enr(r, ro) cos(na — mp)) . (2.9)
b

Define the Poisson kernel by the formula

Pi(r,p,a) = % <% + Z el (r,mo) cos(na — ngp)) : (2.10)

n=1
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From (2.9) we get
P(nSO?OZ) :Pl(n@?a)_'_QQ(rvgoaa)? (211>

where

ensr(ryr0) — €7y (1,
(r, ¢, ZS cos(na —ng), Su(r) = jr(rmo) = ey, 0). (2.12)

™

Thus from (2.8) we get

u(r. ) — / " Py ) f(a)da = / "Qur g f(@)da. (213)

Further since eq/,(r, o) = ﬁ < 1 from (2.10) we get

O /eila=p)\ "
Pl(r,ap,a):%<%+%lz<[((r)> D (2.14)

n=1

ma ®) ©© ei(a—«p) " 1
wPy(r éRZ e __:%Z<K(r)) -5

By the geometric progression sum formula we get

1
27TP1(7°,Q0,0[) = 2§R [W] - ]_,

K(r)
K(r) K(r)
21 P, = . . -1
T 1(T’ ¥ CY) K(T’) — eila—yp) K(r) — e~ ila—yp)
B K?*(r)—1
~1—2K(r)cos(a — ) + K2(r)’
and K2(r) - 1
7"‘ —
P, = 2.15
1) 27 (K2(r) — 2K (r) cos(a — ¢) + 1) (2.15)
or (1.10).
Lemma 2.1.
1 n_
671‘/7,(7’, 7o) = €p,(r,70), Dn = (L+p/r) , n=1,2,..., (2.16)
L
o) <epsr(ryro), n=12,..., r<nr, .
/ 1,2 2.17
o Ay
(a3, ) >0,
Cn/r(r;T0) < n=223,..., r<rg, (2.18)
(ﬁ) , nly) =0,
Ay B i — g >0
0, uy) = 0.
Moreover, by assuming condition (1.8) we get
1
‘ﬂ'Qﬂ < A(T)B(T) T RKOEO -1 ,U(y) > 0, (2.20>
0, n(y) = 0.
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Proof of Lemma 2.1: In view of (1.3), expression (2.16) is true when n = 1. On the

other hand, if we assume (2.16), then in view of (1.5) we have

6717;1(7"7 ro) = 6;(7"7 r0)€p, (1, 70) = €4(r, 7o),

where

—_

=14 %[(1 el =1+ 1y -

—_

=) ) =

r

= p[(l + /)" = 1] = ppa.

—_ =

The rest of the proof follows by induction.

The inequality (2.17) follows from (2.16) and hence p, > n/r. To prove the
inequality (2.18) we note that if p(y) > 0 then (1.3) implies that
"1 In(1
ne(ry o) = eXp/ n(n) + In(1/n + 'LL/T)A’I“
ro H
g [0l
ro H
<l B /T In(u/r)Ar

omexp
0 K
r Ay

= A(r)nf*o ZON

For the case u(y) = 0, inequalities (2.18), (2.19) are obvious. If u(y) > 0 we obtain
(2.19) by using (2.18). To see this, note that

ro Ay

T|Su| = 7Sn = enyr(r,10) — €1),(r,m0) = €nyr(r,m0) — K7 < A(r)nff' wy) — K7,

Using the assumption (1.8) we get (2.20). That is

7Qal € D 7lSal < A() Yol — 3T KT r) = A)B(r) - K(r)(Kl(r) —1)

Finally, from (2.13),(2.19) we get

27 2
7 |ulr. ) / Pu(r, p,0)f (a)da| < / 71Qa(r, 0, 0) f (@) |da <

(40080 - o= ) [ M@da < a080) [ Ist@lda
which gives (1.9). O

The author would like to acknowledge Professor A. Peterson for the suggestion
to include Example 1.3.



POISSON’S INEQUALITY FOR A DIRICHLET PROBLEM 421

[1]

REFERENCES

M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applica-
tions, Birkhéuser, Boston, 2001.

M. Chamberland, Mean value integral equations and the Helmholtz equation, Results Math. 30
(1996), 39-44.

F. John, Plane Waves and Spherical Means, Interscience, New York, 1955.

S. Hilger, Analysis on measure chains-A unified approach to continuous and discrete calculus,
Results Math. 18, (1990), 18-56.

G. Hovhannisyan, Weighted mean value theorems for the singularly pertubered Laplace equa-
tion, J. Contemporary Math. Anal (Armenian Academy of Sciences) 23:4 (1988), 2033 [Izv.
AN Arm. SSR, Matematika (1988), 23:4 325-335 (in Russian)].

E.T. Quinto, Mean value extension theorems and microlocal analysis, Proc. Amer. Math. Soc.
131 (2003), 3267-3274.

E. C. Titchmarsch, Figenfunction Ezpansions Associated With Second-Order Differential Equa-
tions, Part II, 1958, Oxford, Clarendon Press.



