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SUMMARY

It is known that the ratio of energy and frequency is an adiabatic invariant for linear harmonic
oscillator. In the paper some new adiabatic invariants are found for linear ordinary differential
equation of order 2n corresponding to n connected oscillators. The denominators of these invariants
are vanishing when differences of some frequencies tend to zero (resonance). The changes of the

considered invariants are estimated.

§1. MAIN RESULTS

Let z(t,¢) be a solution of the equation of linear harmonic oscillator:
Dir +w*(et)r =0, t€ER,

where D; = d/dt and € > 0 is an arbitrarily small parameter. The ratio of energy

df
and frequency Dt 4w B
J(te) =0 TOE B (1.0)

2w w
is called adiabatic invariant and the full change of J(t,e) can be estimated as J(g) =
J(00,e) — J(—00,e) = O(e™), ¢ — 0 if w and z satisfy some conditions (see for
instance [1], [3], [4]).
Consider the ordinary linear differential equation

n
DFz+> Y Wl WD Me=o, (1.1)
k=1 1<i1<...<ip<n
where D; = %, W = wp(et), m=1,...,n and € > 0 is an arbitrarily small parame-
ter.

Everywhere below we shall assume that the frequencies {w,,(7)} where 7 = et
satisfy the following conditions:
(i) wn(7) € C?*(R), the functions w,, () are positive and different;

(ii) w,,(7) have finite, positive and different limits w,,(+£o0) = wi;

(iii) [ |wa(7)|dr <oo, k=1,2,...,2n.

n
m=1»



Let ¢;(t,e), j =1,...,2n be linearly independent, 2n times continuosly differentiable
by ¢t € R asymptotic solutions of (1.1), i.e

DF Yy = [1+edu(t,e)]Di Yy, G k=1,...,2n,

where {1;(t,£)}2" is a fundamental system of solutions of (1.1) and | d;x(¢, ) |< ¢ for
any t € R, ¢ > 0.

Definition 1. The quantities

W(SOL ey Ph—1, T P41y - -y 802n) 2

W(Qpla cee 790211)

Je(t,e) = Ix(t,x,e) =

k=1,...,m, we call adiabatic invariants of (1.1). Here x = z(.,e) € C"™(R) is a
solution of (1.1) with bounded by ¢ Cauchy data x(0,¢) = xg,...,D*x(0,e) = x,,
W(p1,...,0m) = det(Df_lcpj)zgzl is the Wronskian of o1, ..., Qan,.

t
Taking @19 = w2 exp(+i [w(es)ds) one can obtain the classical formula (1.0) for
0

the equation of oscillator.

Denote
n—1
n— 2(n—k—1
= D" ? 4 Z wfl...w?th( ),
k=1 1<is<..<ip<n,mg{ip}k_,
Ko (7) = W2, (1) — w?(7) = JI Ew Eun=(Pu(Di))* +w),(Pnx)’.

1<m<li<n

One can observe that the quantities F,, are first integrals of (1.1), i.e. D;E,, =0 for
Wy, = const. Substituting in P,, 7 = €t, we obtain the operator

n—1
L, = €2n72D3n72 + Z Z w2 w2 62(n k— l)Dz(nfkfl)'

11
=1 1<i1<..<ip<n, m%{zp}

In this paper we show (§3, Theorem 2) that if the conditions (i) — (iii) are satisfied,
then there exist adiabatic invariants of (1.1) which have the forms

I (t,e) = —exp 2/ Z wlz(T m=1,...,n (1.2)

oz Kol)

and satisfy the following conditions:



1° there exist some constants C' > 0 and £ > 0 such that for any t1,t, € (—00,0)
and 0 <e < ¢

| Jk(t1,e) — Ji(te,€) | < Ce; (1.3)
2° Je(e) = Jp(o0,€) — Jp(—00,6) =0(e), as €—0, k=0,---,n (1.4)
Example. For forth order equation
D}x + [wi(et) + wi(et)|Dix + wi(et)ws(et)x = 0 (1.5)
we have
Dy[ws(et)]
Ji(t,e) = —exp 2/ (s (et) , (1.6)
Dy[wi(et)]
Jo(t,e) = —exp —2/ tfeilet) : (1.7)

where By = (D}z + w?_ Dyx)? + wi(Dix + w2 ,2)% K = w} —wi.
In [7] we also show that the full changes of Ji(t,¢), Jx(e) = Jr(o0, ) — Ji(—00, €) are
exponentially small if w;, satisfy some additional conditions of holomorphity.

§2. ASYMPTOTIC SOLUTIONS OF EQUATION (1.1)

One can rewrite (1.1) in the form
Lu = D*u + Z Z W .. .wfks_%Dz(”_k)u =0, (2.1)
k=1 1<i1<...<i<n

where 7 = et and u(1,e) = x(t,e). Solutions of this equation can be expressed by the
roots +(iwy,)/e of the coresponding characteristic equation

n
AP+ E E B .w?kg_%/\%”_k) = 0.
k=1 1<i1 <...<ip<n

In virtue of a generalization of Levinson asymptotic theorem ([7], theorem 2) from
(i) — (iii) it follows that for 7 € [T'", 00) there exist some solutions {u} (7,€)}32, €
C?*([T",00)) of (2.1), representable in the form

Dk1+ DE % [+h( 8)], (1<j,k<2n),

T

e fiwn® & D)
Umel—wm/ eXp/(T_ Z m) dt,

0 I=1,l#m

where



U2m = U2m—1, mzl,...,n

The functions hj, (7, ¢) for some ¢ > 0 satisfy the estimate

c| hjk(T ) |< | Jnax, exp/ | ®2" L, ()W (t, Uy, - . ., Ugy) | dt 3 — 1.
$,q<2n
Here W (r, 4y, ..., us,) = det D,
Uy Uop,
D?_nilﬂl R Dznil’ljgn

and ®2" are the minors of ® obtained by deleting its 2n-th line and s-th column. One
can be convinced that from (iii) it follows that

lim Dfw,(r) =0, k=1,....2n—1. (2.2)

T—F00

Indeed, as

Dyw = /D?wl(s)ds + D,w(a),

+0o0
the limits D,w; (+00) are finite. On the other hand, there exists | Dswids. Therefore
D,wi(£00) =0 (see [8]). The same argument completes the proof of (2.2).
A direct calculation and use of (4.2) gives

K(0) 2= UMW (7. 20y, . . . Tgn) = (—20)" + ep(T, €),
C C
=t D@D
where lim p(7,e) = 0 and | p(7,¢) |< C. Therefore the solutions {u; }3", take the

T—F00

form

| Lug |< | o <

Di~tut = DE'u[l 4 epj (7€), (1<j,k<2n), (2.3)
where lir+n p.k(r e) =0 and | p-k(T e)|<Cforany e >0 and 7 € [TT,00).

Also there exist solutions {u; }3*, € C*"((—o0,T~]) of the equation (2.1) which
for 7 € (—o0,T~] can be represented in the form

Dy luy = D[l +epp (o), (1< gk < 2n), (2.3)



where lim pj (7,¢) = 0 and | pj(7,¢) [< C(T) for any € > 0 and 7 € (—o0,T].

Assuming that w is a solution of (2.1) on [T'~, T"] observe that some functions o; are
uniquely defined by formulas

2n
DE 1ty = E o; D" u; k=1, 2n.
j=1

Hence we get the following system

Z \ Dro; D1, =0, m=1,---,2n —1,
n—1-~ 2n ~
Zj:l Dyo; D2~V = — 375" o L.

The solutions of this system are
D:oy, =Y Bjoj, where Bj=—W (i, -, ) L&}

Integration of D, oy gives

T 2n

oL = C’k—i-/ZBjkajds k=1,...,2n.

Using the obvious estimate

2n 2n A 2n
S lal< 161w [ B Joy ) ds
7=1 7=1 0 Jj=1

where B(s) = max;; | B;j(s) |< Ce and the well known Gronwall’s lemma we get

2Zn|aj|<22n|6'|exp 2n/Bds
j=1 j=1 2
Consequently
1 2n T
8|5k|§%;|0j| exp 2n0/Bds -1,

where o, = C} + €0;. From the conditions

DE (Tt ¢) = D’j_luj(T+,g), k=1,---,2n
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it follows that

1+E(1j, ]{3:]7
eay, k‘l%‘?a

{a;}?", = const

Cy +e0p(TT, ) = {

and
T+

2n
Z|C’k| 2 —exp Qn/Bds <
k=1

0

2n
<> (1Ck =2 0u(The) |) <
k=1

2n
1+€Zak .
k=1

Therefore C) and 6 are bounded by € > 0 and
DY tu = DiYs(t + epji(m,e)], | pjrl(me) < C.

By same way one can extend the solutions (2.3) on (—oo,7~]. So we proved the
following

Theorem 1. The equation (2.1) has solutions u; € CQ”(R) j=1,---,2n of the
form (2.8), (2.3°), where hrjl[rl p]k(T e) =0 and | p]k |< C for any ¢ > 0 and

T € (—00,00).
As one can verify
K(0) 2@ Uniy = (—2i)" + o(1), 7 — 0. (2.4)

Here W+ = W(r,uf, ... u3,) = det ®* and

+ +
ul DR u2n

dT = : ) .
2n—1,,+ 2n— 1

D =Yi ... D> i

In theory of ordinary differential equations it is well known that W= is independent
of 7. Therefore as 7 — £o00 (2.4) takes the form

K(0>—2€(2n—1)nwﬂ: — (_22)11

Since {u] }32, and ({u }32,) are the fundamental solutions of (2.1), any solution u

of (2.1) is representable in the form

_ gt +ot == — =
u=ajyuy +...+a3,Us, =aju; + ...+ ay,Usy,, (2.5)

2n

where {ajE , depend on €.



Introduce a matrix

11 e Ogop
ale) =+ - : (aij = aij(e))
Qop1 .. Q2p2p
by the formula
u =au', where  u® = colon(u7, ..., u3,). (2.6)

Using the definition of a(e) and the obvious equalities det @~ = det &7,
T = ,....D W) =a(ut,..., D ut) = adtt

and ®~ = ®*al, where u*,..., D?" ly* are vector-columns, we obtain det a = 1.
Using (2.5) one can easily show that

a” =a’a",where a* = colon(af,...,a3,). (2.7)
Lemma 1. [f the conditions (i) — (iii) are satisfied, then

Q5 = 61’]’ + 0(8) (28)

Proof. Differentiating (2.6) & times (0 < k& < 2n — 1) and solving the obtained
systems by o;; we get

+ + - .+ +
WUy U Uy Uy Uy
Y5 = W
and Wira L o)
T,ul,...,uj_l,ui,uj+1,...,u2n
Q5 = + €I€ij(7', 6), (29)

W+
where 1 < 4,7 < 2n and | k;;(7,¢) |< C. Now (2.8) easily follows from (2.9). Con-
sequently, if {a; }32, are bounded in some interval (0,¢o), then {a;}?", are bounded
in other interval (0,¢y).

§3. ESTIMATES OF CHANGES OF ADIABATIC INVARIANTS

Lemma 2. [f the conditions (i) — (iii) are satisfied and the solution of (2.1) is rep-
resentable in the form (2.5), where {a; }3, are bounded in (0, <), then
4Qm(0)2 T, (e) = a3, a3, —as, a5, m=1,...n, (3.1)

where Qu, = [[ Ko, 1 <1< n, l #m, and J,,(¢) are defined by (1.4).
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Proof. Differentiating (2.5) k times (0 < k < 2n — 1) and solving the obtained
system by a, we get W,;t = af, where

W,;t = (—2i)" ”K(O) g@n=1) ”W( .. ,uf_l, u, u,irl, . ,uécn)

On the other hand, using the boundedness of {ajE 2, and (4.4) we obtain the
folowing two formulas:

1 ELm Dyt + twy, Lpu

WZim—l = (_1)

2iQum (0)wn!?
X exp/ < wm(t) Z ) dt + £py 1 (T ),
0 Li#Fm Ko
LDrw — iwp, Loy, Wi (1) ” Dy w?(t
W2im = (_1 6 . Z('01/2 . ex / Zw t[wl ( )] dt—i-éfp%tm(T, 5)7
22@m( 0 = 11# ml(t)

where lirf pE(1,e) = 0and | pt(7,¢) |< C. Thus, if the solution has the form (2.5),

where {a; "1 are bounded, then
Im(t, € _ _ — ~
462(—(0))2 = Ugpy 10y, + 8pm<t7 8) = a;rmfla;m + gp;(t’ 8)7 (32)

where lim pE(t,e) =0 and | pE(t,e) |< C. From (3.2) easily imply (3.1).

Theorem 2. If the conditions (1) — (iii) are fulfilled, then there exist adiabatic in-
variants of (1.1) which have the forms (1.2) and satisfy the estimates (1.3) and (1.4).

Proof. Let x = z(.,e) € C*"(R) be a solution of (1.1) with bounded Caucy data.
Then from the formula W5 = a; it will follow that in the representation (2.5) the
coefficients @i are bounded by e. From (2.7) and (3.1) it follows that

40 (0 g Qj2m—10; g Qjam@; — Qg 10gp, M =1,...,n.

. From (2.8) we have J,,(¢) = O(e) as ¢ — 0.

From (3.2) it follows that
| T (t1,€) — Jm(te, €) |< Ce.
The theorem is proved.



4. PROOFS OF AUXILIARY FORMULAS

Let (a;;)*"™ be a (2n 4 1) x (2n + 1) matrix. Assume that one of the cases
a) a;; =0 when i + j is even,

b) a;; =0 when i+ j is odd,

is valid. Denoting b;; = ag;—1,2j—1, Cij = 2;2; and

A2n+1 = det(aij)%“, Bn+1 = det(bij)”ﬂ, Cn = det(cij)”

we shall prove the formula

A =% Tyl (1)
Bp1Cy, if b) is valid.

The first line is true, i.e. the determinant is zero because ay;, as;, - . . G2nt1,is,,, = 0.

Indeed, these products differ from zero only if the quantities igx 1 (K = 0,...,n)
are even. But the number of even columns of the determinant is n. Therefore
A1,i,02,5 - - - Q2n41,i5,,, = 0. The second line of (4.1) can be proved by induction.
Indeed 0
a1 a3
0 929 0 = 922 o G13 .
asy ass

azir 0 ass

If Agn,1 = BnCn,1 and {Cll’gj,l}?ill, {&2’2]'}?:1 7é O, then

ass __ asi a32ntl _ as1
a3 ail o al,2nt1 al
Aopy1 = Q11 ... Q12041022 - . . Q2.9, : - : X
a2n+1,3 _ A2n41,1 a2n+1,2n+1 _ G2n+1,1
a3 ail o ai,2n+1 ail
a44 _ Q42 a42n _ a4z
az4 ag2 U az 2n as2
>< . . =
a2n,4 _ a2n,2 a2n,2n _ 42n,2
a4 a2z T a2on a2z
a1 @13 e ai,2n4+1 22 Q24 ... Q(292n
a31 a33 .. a3,2n+1 Q42 Qqq ... Q42n
(2n+1,1 A2n+13 --- A2n412n+1| |A2n2 A2p4 ... A2p2n

One can easily prove the last formula without assuming that {a12;_1}727, {az.;}7—, #
0.
We shall use the following well-known formula for the Van der Mond determinant

1 1 o1
o « cee Oy
' ? = H (ij — CYZ'). (42)
. ) 1<i<j<m
ap o ag Oy



By induction one can prove that

A= 2n_1$2 ..

VA |

1<i<j<m

fo 1
f1 a7
fm of

m

Uy

m
k
o — ai)[fm + E (=1)" fon—s E iy ooy,
k=1 1<i <...<ix<m
Now we can calculate the following determinant:
U 1 1 1 1 1
U1 —T ) —XT9 Tn — Ty
2n—2 2n—2 2n—2 2n—2 2n—2
2n—1 2n—1 2n—1 2n—1 2n—1
The suitable elementary transformations give
U 1 0 1 0 1
Ul + T1lUg 0 1 0 1 0
U2 x?n—? 0 x%n—Q 0 xin72
In—2 _
Up—1 + T1Up—_2 0 IQn 0 ZL‘in 2 0

Using the first formula of (4.1) we get

n

A=-2"1gy. . 2, Z(—l)”_kx

k=1

1 0 1

0 1 0

0 221
x%k_Q n() xi’“”

0 x2F 0
:Cgr.sz 0 xi’;_Q

(Ugp—1 + T1U2k—2).

Now using (4.2) and the second formula of (4.1) we obtain

A= (=1)"2" gy ..

1<i<j<n

10

n

DY (-1

k=1

(4.3)



1 o 1
S i
X | Zop o | (Uap—1 + T1U2r—2)
T5 B
2n—2 2n—2
Ty xn
and
Uy + T1Ug 1 e 1
2 2
U3 + T1Us r3 ... X
non—1 2 2 n
A= (-1)"2""zy... 1 H (x5 — x7) ) ) ) )
1<i<j<n ) ’ ’
= = 2n—2 2n—2
Uop—1 + T1U2p—2 Ty R iy

At last, from (4.3) it follows that

A= 2", . .2, H (zF —a7) H (% — a7)x

1<i<j<n 92<i<j<n
n—1

X [u2n_1 + T1Uopn_o + Z((_l)kUQ(nfk)fl + $1u2(n7k)72) Z ZL‘?l c. ZL’?k] (44)
k=1 2<iy <..ip<n
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