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Abstract. Let N be a minimal normal nonabelian subgroup of a finite group

G. We will show that there exists a nontrivial irreducible character of N of
degree at least 5 which is extendible to G. This result will be used to settle two

open questions raised by Berkovich and Mann, and Berkovich and Zhmud́.

1. Introduction and notations

All groups are finite. Let G be a group. Denote by Irr(G) the set of all complex
irreducible characters of G. Let N be a normal subgroup of G. Let θ ∈ Irr(N)
be an irreducible character of N. We say that θ is extendible to G if there exists
χ ∈ Irr(G) such that the restriction of χ to N is θ, that is χN = θ. There are
many papers devoted to finding a sufficient conditions for θ to be extendible to G
(see Gallagher [7], Gagola [6] and [8, Chapter 8 and 11]). In this paper, we are
interested in the existence problem, that is, assume N is a normal subgroup of
G, is there any non-trivial irreducible character of N that extends to G? We are
mostly concerned with nonsolvable groups. Suppose that N is a minimal normal
nonabelian subgroup of a group G. In [3, Lemma 5], it is shown that there exists
a nontrivial irreducible character θ of N which is extendible to G. In Theorem 1.1
below, we will show that θ can be chosen with θ(1) ≥ 5. Using this result, we answer
two open problems raised by Berkovich and Mann, and Berkovich and Zhmud́.

Theorem 1.1. Suppose that N is a minimal normal nonabelian subgroup of a group
G. Then there exists an irreducible character θ of N such that θ is extendible to G
with θ(1) ≥ 5.

Let T (G) be the sum of degrees of complex irreducible characters ofG, i.e T (G) =∑
χ∈Irr(G) χ(1). Let k(G) be the number of conjugacy classes of G and let b(G)

be the largest irreducible character degree of G. Let N be a normal subgroup
of G. Denote by Irr(G,N) the set of all complex irreducible characters χ of G
such that N 6≤ Kerχ and by T (G,N) the corresponding sum of degrees of all
characters in Irr(G,N). It is obvious that Irr(G) = Irr(G/N) ∪ Irr(G,N) and
T (G) = T (G/N) + T (G,N). In [1, Theorem 8], Y. Berkovich and A. Mann showed
that if G is nonsolvable then T (G) > 2|G : G′| and they asked whether or not
T (G) > 2T (G/N), where N is a nonsolvable normal subgroup of G. Here is our
first result.

Theorem 1.2. Let N be a nonsolvable normal subgroup of a group G. Then T (G) ≥
6T (G/N).
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This settles Question 4 in [1] or Problem 138 in [2]. By Schwarz inequality,
it is easy to see that T (G)2 ≤ |G|k(G). Hence T (G) can be used to estimate
k(G). Moreover, as T (G) ≤ k(G)b(G), we can also get a lower bound for b(G)
in terms of T (G) and k(G). The reason that we are interested in the character
degree sums comes from a question of Jan Saxl ([9, Problem 9.56]) which asked
for the classification of groups in which the square of every irreducible character
is multiplicity free. In fact if we could prove that T (G/F (G)) < b(G/F (G))2,
provided G is nonsolvable, where F (G) is the Fitting subgroup of G, then such a
group in Jan Saxl’s question is solvable. This will limit the possibilities for such
groups. The proof for this fact is quite straight forward. Let G be a minimal
counter-example to the assertion that the square of every irreducible character of
G is multiplicity free but G is not solvable. We first observe that if N E G and
χ ∈ Irr(G/N) then χ ∈ Irr(G) and every irreducible constituent of χ2 in G is
also an irreducible character of G/N so that χ2 is multiplicity free in G/N since
it is multiplicity free in G. Thus G/N satisfies Saxl’s condition. Secondly, for any
χ ∈ Irr(G), as χ2 is multiplicity free, it follows that χ(1)2 = χ2(1) ≤ T (G).
Now combining these two observations for the quotient group G/F (G), we obtain
b(G/F (G))2 ≤ T (G/F (G)), where b(G/F (G)) is the largest character degree of
G/F (G). As G is nonsolvable and the Fitting subgroup F (G) is solvable, G/F (G)
is nonsolvable. Then the inequality mentioned above would provide a contradiction.

Denote by T1(G) the sum of degrees of nonlinear irreducible characters of G.
Let Irr2(G) = {χ ∈ Irr(G) | χ(1) > 2} and let T2(G) be the sum of degrees of
characters in Irr2(G). Observe that if G does not have any irreducible characters
of degree 2 then T1(G) = T2(G), for example, this is the case if G is a nonabelian
simple group. The following result is a generalization of [1, Theorem 8].

Theorem 1.3. If G is nonsolvable then T2(G) ≥ 5|G : G′|.

It is well known that a group G is abelian if and only if T (G) = k(G). The
following theorem shows that the structure of G is very restricted when T (G) is
small in terms of k(G).

Theorem 1.4. If T (G) ≤ 2k(G) then G is solvable.

This gives a positive answer to Problem 24 in [2]. We note that this property
does not characterize the solvability of groups. In fact, let G ∼= 32 : 2S4, which
is a maximal parabolic subgroup of PSL(3, 3). We have T (G) = 50, k(G) = 11,
T (G) > 4k(G) and G is solvable. Now if G ∼= A5, then T (G) = 16, k(G) = 5,
T (G) < 4k(G) and G is nonsolvable. We conjecture that a group G is solvable
provided that T (G) ≤ 3k(G).

2. Preliminaries

Lemma 2.1. Let T be a non-abelian simple group. Then there exists a nontrivial
irreducible character ϕ of T that extends to Aut(T ) with ϕ(1) ≥ 5.

This is essentially Lemma 4.2 in [10] or [3, Theorems 2, 3, 4]. However, the
fact that ϕ(1) ≥ 5 is not explicitly stated there so that we will give a proof for
completeness.

Proof. According to the Theorem of Classification of Finite Simple Groups, every
nonabelian simple group is isomorphic to the alternating group of degree n ≥ 7, a
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sporadic group or a finite group of Lie type. We will consider the Tits group 2F4(2)
as a sporadic rather than a finite group of Lie type. For alternating group An, n ≥ 7,
the irreducible character ϕ corresponding to the partition (n− 1, 1) extends to Sn
and ϕ(1) = n − 1 ≥ 6. If T is a sporadic group, Tits group or A5, by inspecting
[4], we can see that there exists an irreducible character ϕ of T that extends to
Aut(T ) with ϕ(1) ≥ 5. Finally assume T is a finite group of Lie type defined over
a field of size q = pf , where p is prime. Choose ϕ to be the Steinberg character
of T of degree |T |p, the order of the p-Sylow subgroup of T. Then ϕ is extendible
to Aut(T ) (see [5]). Moreover, we can easily check that |T |p > 5 provided that
T 6∼= L2(4) ∼= L2(5) ∼= A5. Thus ϕ(1) ≥ 5. This completes the proof. �

Lemma 2.2. (Gallagher [8, Corollary 6.17]). Let NEG and let χ ∈ Irr(G) be such
that χN = ϑ ∈ Irr(N). Then the characters βχ for β ∈ Irr(G/N) are irreducible,
distinct for distinct β and are all of the irreducible constituents of ϑG.

3. Proof of the Main Results

Proof of Theorem 1.1. Since N is a minimal normal nonabelian subgroup of
G, there exists a nonabelian simple group T such that N = T1 × T2 × · · · × Tk,
where Ti ∼= T, i = 1, · · · , k. Let ϕ be an irreducible character of T obtained from
Lemma 2.1 and let θ = ϕ× ϕ× · · · × ϕ. By [3, Lemma 5], θ ∈ Irr(N) and it is ex-
tendible to G. As ϕ(1) ≥ 5, we have θ(1) = ϕ(1)k ≥ 5. The proof is now complete. �

Proof of Theorem 1.2. We argue by induction on the order of G. Assume
first that N is a minimal normal subgroup of G. By Theorem 1.1, there exists an
irreducible character ϕ of N which extends to an irreducible character χ of G with
χ(1) ≥ 5. Now by Lemma 2.2, there is an injective map from Irr(G/N) to Irr(G,N)
which maps β ∈ Irr(G/N) to βχ ∈ Irr(G,N), so that χ(1)T (G/N) ≤ T (G,N).
Therefore

T (G) = T (G/N) + T (G,N) ≥ (1 + χ(1))T (G/N) ≥ 6T (G/N).

Now assume that N is not a minimal normal subgroup of G. Let K be a minimal
normal subgroup of G which is contained in N. Then K is a proper subgroup of N.
If K is solvable, then N/K is nonsolvable, and by inductive hypothesis, we have

T (G) ≥ T (G/K) ≥ 6T ((G/K)/(N/K)) = 6T (G/N).

If K is nonsolvable, then we can apply the result proved in the first paragraph to
deduce that T (G) ≥ 6T (G/K). As K ≤ N, we have T (G/K) ≥ T (G/N) so that
T (G) ≥ 6T (G/K) ≥ 6T (G/N). The proof is now complete. �

Proof of Theorem 1.3. Let N be the last term of the derived series of G and
let K be maximal among the normal subgroups of G that are contained in N.
Since N = N ′ ≤ G′, it suffices to prove the result for G/K so that we can as-
sume that K = 1 and hence N is a minimal normal nonabelian subgroup of G. By
Theorem 1.1, there exists an irreducible character χ ∈ Irr(G), with χ(1) ≥ 5, and
χN = ϕ ∈ Irr(N). Let ψ = χG′ . As ψN = ϕ ∈ Irr(N), it follows that ψ ∈ Irr(G′)
and hence χG′ = ψ ∈ Irr(G′) with χ ∈ Irr(G) and χ(1) ≥ 5. Now by Lemma 2.2,
there is an injective map from Irr(G/G′) to Irr2(G) which maps β ∈ Irr(G/G′) to
βχ ∈ Irr2(G), so that χ(1)|G : G′| ≤ T2(G). Thus T2(G) ≥ 5|G : G′|. This finishes
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the proof. �

Proof of Theorem 1.4. By way of contradiction, assume that G is nonsolvable.
Let a be the number of linear characters of G, let b be the number of irreducible
characters of G of degree 2 and finally let c be the number of irreducible characters
of degree greater than 2. We have

(1) k(G) = a+ b+ c

(2) T (G) = a+ 2b+ T2(G)

(3) T (G) ≥ a+ 2b+ 3c

Since T (G) ≤ 2k(G), it follows from (1) and (3) that

a+ 2b+ 3c ≤ 2a+ 2b+ 2c

and hence

(4) c ≤ a

Since T (G) ≤ 2k(G), it follows from (1) and (2) that

a+ 2b+ T2(G) ≤ 2a+ 2b+ 2c

and so

T2(G) ≤ a+ 2c.

Combining with (4), we obtain

(5) T2(G) ≤ 3a = 3|G : G′|.

However, this contradicts Theorem 1.3. Thus G must be solvable. This completes
the proof. �
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