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Abstract
The problem of spontaneous emission is studied by a direct computer simulation of the
dynamics of a combined system: atom + radiation field. The parameters of the discrete finite
model, including up to 20k field oscillators, have been optimized by a comparison with the
exact solution for the case when the oscillators have equidistant frequencies and equal
coupling constants. Simulation of the effect of a multi-pulse sequence of phase kicks and
emission by a pair of atoms shows that both the frequency and the linewidth of the emitted
spectrum could be controlled.

1. Introduction

The process of spontaneous light emission is the collective
quantum dynamics of an atom and electromagnetic radiation
field. Since the solution was proposed by Dirac [1] and Fermi
[2], many authors have revisited this problem with analytical
methods or computer simulations in order to reveal more
details of this process. The model is a natural example of
an open quantum system [3]. A detailed understanding of
its dynamics and the role of correlations would be valuable
for many applications related to the dynamic control of a
quantum system interacting with its environment. Examples
are quantum control [4], quantum measurement [5] and
quantum information processing [6]. Following the explicit
evolution of the wavefunction of the entire system, atom +
radiation field, reveals many details lost in approximations.
Today, greatly enhanced computational capabilities not only
allow for a direct simulation of spontaneous emission in its
classical formulation, but also make possible simulations of
more complex dynamics, for example emission by a multi-
atom system or under perturbation of an atom by a train of
laser pulses.

In this paper, we will follow the concepts of Fermi’s work
[2], i.e. it will be assumed that the atom is placed in a box
and coupled to the normal modes (quantum oscillators) of the
electromagnetic radiation field inside the box. The goal is
to find the limiting behaviour when the size of the box goes
to infinity. In the initial state, the atom is in its first excited
state and the field oscillators are in their ground states (the
Weisskopf–Wigner model [7], the Jaynes–Cummings model
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[8]). Further, if one neglects multi-photon processes, the
evolution can be restricted to a small subspace of the entire
Hilbert space, where only the ground and the first excited
states of each field oscillator are included. The basis set that
spans this subspace is {|�k〉}. |�0〉 corresponds to the state
with the atom in its excited state and all field oscillators in
their ground state. |�k〉 with k �= 0 corresponds to the state
in which the kth oscillator is in its first excited state, while
the atom and other oscillators are in their ground states. This
approximation is based on the notion that when the size of the
box increases to infinity, the coupling constants between the
atom and field oscillators decrease to zero and, therefore, only
near-resonance oscillators are important. As a result, in this
‘single-photon subspace’ both the atom and the field oscillators
are represented by two-level systems. The Hamiltonian is

H =
∑

k

EkS
z
k +

∑
k �=0

ηk

(
S+

0 S−
k + S−

0 S+
k

)
, (1)

where Ek is the energy difference between the excited and
ground states of the atom (k = 0) and the oscillators (k �= 0),
ηk is the coupling constant between the atom and the kth field
oscillator, S± = Sx ± iSy, Sα = (1/2)σα and σα, α = x, y, z, are
the Pauli matrices. In the interaction frame, obtained by the
transformation U = exp

(−ith̄−1E0
∑

k Sz
k

)
, the Hamiltonian

is

H =
∑

k

εkS
z
k +

∑
k �=0

ηk

(
S+

0 S−
k + S−

0 S+
k

)
, (2)

where εk = Ek – E0 is the resonance offset of the kth oscillator.
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In the {|�k〉} basis, the Hamiltonian (2) is represented by
the matrix

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

ε2 η2

ε1 η1

· · · η2 η1 0 η−1 η−2 · · ·
η−1 ε−1

η−2 ε−2
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3)

where only the non-zero elements of the matrix are shown.
The wavefunction at any moment in time is given by

�(t) = exp(−ith̄−1H)� (0) =
∑

k

ak(t)�k. (4)

In the initial state a0 = 1, ak = 0 (k �= 0). |a0(t)|2 gives
the probability of the atom to be in the excited state, while
the probabilities of the kth oscillator to be excited, |ak(t)|2,
describe the spectrum of the emitted light. The evolution (4)
is calculated in this work by a direct diagonalization of the
Hamiltonian (3).

The paper is organized as follows. Section 2 provides
calculations on the 2pz → 1s transition of a hydrogen
atom in a three-dimensional box. Section 3 details
a computationally efficient pseudo-one-dimensional model,
which has an analytical solution and can be used to analyse
the limit of an infinite number of field oscillators. The results
obtained in this section are used to optimize the parameters
of a discrete finite model for direct numerical simulation in
situations when analytical solutions are not available. In
sections 4 and 5 we examine two such problems, namely
a single atom acted upon by a train of composite laser
pulses and spontaneous emission by a system of two coupled
atoms. In sections 3–5 we consider general two-level atoms,
rather than the specific example of the hydrogen transition in
section 2. Conclusions are presented in the final section.

Some simulations for an atom in a 3D box have been
performed with a cluster of supercomputers of the Ohio
Supercomputer Center. The rest of the calculations have been
done by using a Dell Precision Workstation equipped with two
dual-core 64-bit processors operating at 3.7 GHz.

2. 3D box

As an example with realistic physical parameters, we present
the results of simulation for a hydrogen atom placed in the
centre of a 3D box. The atom, initially in the 2pz excited state,
undergoes a spontaneous transition to the 1s ground state.

For the Hamiltonian (3), numerical simulation becomes
impractical due to memory constraints for matrices larger than
roughly 20k by 20k. The box size has been optimized to
allow for a substantial number of oscillators having frequencies
within the linewidth of the emitted spectrum and, at the same
time, to make a truncation frequency significantly larger than
this linewidth. A small distortion of the box dimensions from
cubic has been introduced to reduce degeneracy and make
distribution of the oscillator frequencies more uniform.

Table 1. Spectroscopic parameters (NIST data [10]).

Emission wavelength λ0 = 121.566 824 nm
Emission centre frequency ν0 = λ0/c = 2.466 071 32 × 1015 Hz
Einstein A coefficient A = 6.2648 × 108 s−1

Corresponding lifetime τ = 1/A = 1.5962 ns

Table 2. Simulation parameters.

Number of oscillator states 20 820
Box length in the x-direction 0.210 259 195 465 6340 mm
Box length in the y-direction 0.210 049 146 319 3147 mm
Box length in the z-direction 0.210 469 665 130 7647 mm
Spectral range of calculation 	 = 8.186 5615 m−1

Transition dipole moment µ = −6.315 826 21 × 10−30 C m

The electromagnetic radiation field inside the box is
written as a superposition of planar standing waves with
the electric field proportional to cos kxx cos kyy cos kzz. The
allowed wave vector components, kα, are chosen to yield a
node in the electric field at the box boundaries. The sine waves
have been omitted because, in the dipolar approximation used
in this work, they are not coupled to the atom, which is located
in the centre of the box. The frequency of the wave with the
wave number k = (kx, ky, kz) is

ωk = kc, k = (
k2
x + k2

y + k2
z

)1/2
, (5)

where c is the speed of light. For each allowed k there is
a freedom to choose two independent polarization vectors,
perpendicular to one another and k. It is convenient to choose
one of the polarization vectors ρ in the (z, k) plane, where z is
the unit vector along the z-axis. Then, only the wave with this
polarization will be coupled to the atom, since the atom has
only z-component of the transition dipolar moment between
the states 2pz and 1s. After the normal modes are defined, as is
described above, quantization is introduced in a conventional
fashion [1, 2] by assuming that each normal mode is a quantum
oscillator. The coupling constants, ηk, in Hamiltonians (1)–(3)
are [9] (SI units)

ηk = −µz · ρ(h̄ωk/ε0V )1/2 = −µ sin(θk)(h̄ωk/ε0V )1/2, (6)

where µ is the transition dipole moment, ε0 is the dielectric
permeability of vacuum, V is the box volume and θ k is the
angle between the corresponding wave vector and the z-
axis. In our simulations, we used µ = e 〈2pz| z |1s〉 =
ea04 (2/3)5

√
2 =−6.315 826 21 × 10−30 C m, calculated with

the exact eigenfunctions of the non-relativistic Hamiltonian
for the hydrogen atom, where e is the electronic charge and a0

is the Bohr radius. In k-space, wave vectors included in the
simulation have been picked from the spherical shell k0 – 	 <

k < k0 + 	, where k0 = ω0/c, and ω0 is the atom’s transition
frequency. Tables 1 and 2 provide the relevant spectroscopic
and simulation parameters, respectively. The results of the
simulation for N = 20 820 field oscillators are displayed in
figures 1–3.

Figure 1 shows the decay of the population of the atomic
excited state |a0(t)|2. In the limit N, V → ∞, one would
expect an exponential decay, which is consistent with the
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Figure 1. Excited-state population of the atom as a function of time.
The solid line is the simulation result; the dashed line is exp(−t/τ ),
with τ from table 1.
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Figure 2. Probability of excitation of the field oscillators at time t =
17.2 ns, as a function of each oscillator’s frequency. Each dot
represents one oscillator in the calculation; the solid line is a
Lorentzian lineshape.

simple concept of a transition probability per unit time given
by Fermi’s ‘golden rule’:

1/τF = 2π 〈|ηk|2〉 ρω, (7)

where 〈|ηk|2〉 is the average square of the coupling constant and
ρω is the spectral density of the field oscillators at the transition
frequency. The exponential decay shown for comparison in
figure 1, exp(−t/τ ), uses τ from table 1.

At t → ∞, the probabilities of finding the field oscillators
excited, |ak(t)|2, (k �= 0), describe the emission spectrum.
Figure 2 shows the oscillator excitation probabilities at t =
17.2 ns, as a function of oscillator frequency. A Lorentzian
profile with the full width at half-height 1/τ and τ from
table 1 is shown for comparison. These probabilities depend
not only on each oscillator’s frequency, but also on the
orientation of the oscillator’s wave vector with respect to
the z-axis. The probability is proportional to sin2(θ k), is
maximal for wave vectors in the xy-plane and approaches zero
for wave vectors parallel to the z-axis. Figure 3 displays
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Figure 3. Angular distribution of the probability for the emitted
photon at t = 17.2 ns. Each dot represents an oscillator in the
calculation; the solid line is sin2(θ k).

the angular distribution of the emitted photon; the expected
sin2(θ k) dependence is shown as a boundary. This double
dependence, on frequency and orientation, is responsible for
the dots that appear below the simulation-data envelopes in
figures 2 and 3. For example, in figure 2 near-resonant
oscillators without a favourable orientation appear under the
envelope. Similarly in figure 3, oscillators in the xy-plane, but
far off-resonant, appear under the data envelope.

As one can see in figures 1 and 2, there are noticeable
deviations from the behaviour expected in the thermodynamic
limit even for ∼20k field oscillators. Among the reasons
that make a discrete 3D model computationally inefficient
are variable coupling constants and non-uniform ‘random’
distribution of the oscillators’ frequencies. Another weak
point of this 3D model is that the walls are insufficiently
far from the atom. During the emission process, the light
propagates over a distance about 1 m. A significant deviation
of the emitted spectrum in figure 2 from the expected
Lorentzian shape is caused by multiple reflections by the walls.
At the same time, the population decay in figure 1 is close to
the expected exponential dependence. In the limit V → ∞, one
expects the dynamics to depend only on average quantities (see
equation (7)). Therefore, the ‘1D model’ with equal coupling
constants and equidistant oscillator frequencies, discussed in
the following section, may better approach the thermodynamic
limit for a fixed number of the field oscillators. As we will see
below, the problem of reflections from the boundaries does not
appear in the 1D model. Another advantage of this model is
that for a conventional problem of spontaneous emission there
exists an analytical solution, which allows for calculations
with even larger values of N.

3. Pseudo-1D model: the exact solution

The simplified form of the Hamiltonian (3) used in this and
the following sections has equal coupling constants ηk = η and
equidistant spacing between the frequencies of the oscillators
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εk = kε. The goal is to find the behaviour at η → 0, ε → 0,
η2/ε = const. The ‘golden rule’ (7) now becomes

1/τF = 2π η2/ε. (8)

With this model, the problem of spontaneous emission
can be solved analytically [11–13]. Since we used a different
approach, we briefly describe the major steps of the calculation
below.

The Hamiltonian can be defined as

H |�k〉 =
{

kε|�k〉 + η|�0〉 if k �= 0

η
∑

l �=0 |�l〉 if k = 0,
(9)

where k spans from −∞ to +∞. Suppose that λk and |�k〉 are
the kth eigenvalue and the corresponding eigenvector of the
Hamiltonian, respectively, i.e. H |�k〉 = λk|�k〉. By inserting
|�k〉 = ∑∞

l=−∞ αl
k|�l〉 into the equation H |�k〉 = λk|�k〉,

one obtains the characteristic equations

η
∑
l �=0

αl
k = λkα

0
k (10a)

εlαl
k + ηα0

k = λkα
l
k for l �= 0. (10b)

Therefore, the eigenvalues satisfy the equation

η2
∑
l �=0

1

λk − εl
= λk, (11)

from which

λ0 = 0 (12a)

and

tan
πλk

ε
= πη2

ε

λk

λ2
k + η2

for k �= 0. (12b)

It is obvious that λ−k = −λk . From the above equations
and the normalization condition, the coefficients αl

k can be
expressed as follows. For λ0 = 0,

α0
0 =

√
3

3 + (πη/ε)2 (13a)

and

αl
0 = − η

lε
α0

0 = − η

lε

√
3

3 + (πη/ε)2 for l �= 0, (13b)

where α0
0 is chosen to be real. Similarly, for the other

eigenvalues,

α0
k =

√
1

3 + (πη/ε)2 + (πλk/η)2 (14a)

and

αl
k = η

λk − εl
α0

k = η

λk − εl

√
1

3 + (πη/ε)2 + (πλk/η)2

for l �= 0. (14b)

Now, it is straightforward to calculate the probability
amplitude that the system is in the state |�k〉. Since the initial
state is |�0〉, the probability amplitude is given by

〈�k| exp(−iHt)|�0〉 =
∑

l

αk
l

(
α0

l

)∗
exp(−iλlt). (15)
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Figure 4. Difference between the population predicted by the
golden rule and the probability evaluated from equation (16) with
(106 + 1) states included. There exist initial differences of −0.0004,
−0.0005 and −0.0008 for η/ε =7 (solid), 8 (dash) and 10 (dotted),
respectively, due to the truncation in summation.

For k = 0,

〈�0| exp(−iHt)|�0〉 = ∣∣α0
0

∣∣2
exp(−iλ0t)

+
∑
l �=0

∣∣α0
l

∣∣2
exp(−iλlt) = 3

3 + (πη/ε)2

+
∑
l �=0

exp(−iλlt)

3 + (πη/ε)2 + (λl/η)2
. (16)

The absolute square of this quantity gives the probability
that the atom stays in the excited state.

With the available exact result (16), we first explored the
limit N → ∞. At any fixed value η/ε, the truncation of
summation in equation (16) stops changing the result when
the number of terms is sufficiently large. We have found that
106 terms are well beyond this limit for all used ratios η/ε.
Therefore, the results shown in figure 4 represent the true
behaviour at N → ∞ for different values of η/ε. According
to Fermi’s ‘golden rule’ (8), the probability or population
decays exponentially with the characteristic time ε(2πη2)−1.
Figure 4 shows the difference between the population predicted
by the ‘golden rule’ and the probability obtained from
equation (16) when the summation in (16) is truncated at
|l| > 500 000 for several values of η/ε. Figure 4 shows that
the curves are different in the middle of the decaying process,
but that the deviation from the exponential decay diminishes
as the ratio η/ε increases. Therefore, in the limit of large η/ε

and N → ∞ the probability that the atom stays in the excited
state follows the exponentially decaying curve predicted by
the ‘golden rule’. The proof of this has been provided earlier
in [11, 12].

For k �= 0,

〈�k| exp(−iHt)|�0〉 =
∑

l

η

λl − εk

∣∣α0
l

∣∣2
exp(−iλlt)

= − η

εk

3

3 + (πη/ε)2
+

∑
l �=0

η

λl − εk

exp(−iλlt)

3 + (πη/ε)2 + (λl/η)2
.

(17)
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Figure 5. Deviations from the exponential population decay for 15k
field oscillators and η/ε = 2.3 (solid), 2.4 (dash) and 2.5 (dots).

Equation (17) allows evaluating the probability
distribution of the states after the spontaneous emission by
the atom. With ε = 10−10, η/ε = 10, t = 1.6 × ε/η2 and
(106 + 1) states, the probability distribution perfectly fits the
Lorentzian curve with the full width at half-height 2πη2/ε (not
shown).

Two problems studied in the following sections do not
allow analytical solutions. To properly simulate the situation
with an infinite number of oscillators, it is necessary to
optimize the parameters of the discrete model, in which only
a finite and limited number of oscillators can be included.
The optimal values of the parameters were determined by
comparing the probability that the atom stays in the excited
state, calculated from the direct numerical simulation, with the
exponentially decaying curve predicted by the golden rule.

In direct numerical simulations using modern computers,
one is limited by about 20k field oscillators. In this case, the
choice of the ratio η/ε becomes important. Similar to the case
N → ∞, with a finite number of oscillators, larger values of
η/ε improve the behaviour at intermediate times. However,
an increase of η/ε now creates deviations at short times. A
compromise value of η/ε is needed to minimize the error in
the entire time range. As one can see in figure 5, for 15k
oscillators the optimal value of η/ε = 2.4 makes the error
in the population decay curve below 0.0035 at all times. We
should note that the results shown in figures 4 and 5 are for
two formally different problems. The ones in figure 4 use
the exact eigenfunctions and eigenvalues at N → ∞, while
figure 5 shows the result of numerical diagonalization for 15k
oscillators.

The size of the 1D box is inversely proportional to ε. In our
calculation, ε was set to a small finite value, and therefore the
size of the box is finite although very long (∼tens of metres to
few kilometres for optical frequencies and ε = 10−10). Long
after the atom decayed to its ground state, the atom is supposed
to be re-excited by the wave reflected by the wall of the box.
Our simulations showed such re-excitation at the exact time
interval that takes the light to make a round trip from the atom
to the wall and back.

4. Multi-pulse train of phase kicks

The interaction between the atom and an individual field
oscillator (see equation (1)) has the operator form

(
S+

0 S−
k +

S−
0 S+

k

)
. Z-rotation in the Pauli space of the atom, performed by

the unitary operator exp
(−iϕSz

0

)
, produces the phase factors

in this interaction term:

exp
(
iϕSz

0

)(
S+

0 S−
k + S−

0 S+
k

)
exp

(−iϕSz
0

)
= exp(iϕ)S+

0 S−
k + exp(−iϕ)S−

0 S+
k . (18)

At ϕ = π the interaction changes its sign. Consequently,
one might expect that if such phase shifts are performed
repeatedly and with a sufficiently fast rate, the interaction
between the atom and each of the field oscillators will be
effectively averaged to zero. This would decouple the atom
from the electromagnetic field and increase the lifetime in the
excited state. Different forms of decoupling, as an example,
for an atom, driven by a strong field, in a resonance cavity
[14], or by coherent excitation of overlapping resonances [15]
have been proposed.

In practice, resonant laser pulses, depending on the
relative phase, can directly produce only x- and y-rotations
in the interaction (rotating) frame. (We should note that
directions in the Pauli space are not related to the directions in
the real space.) Z-rotation by ϕ can be realized by a composite
pulse, as consecutive x, y and −x rotations [16]:

exp
[
i(π/2)Sx

0

]
exp

(
iϕS

y

0

)
exp

[−i(π/2)Sx
0

] = exp
(
iϕSz

0

)
.

(19)

A single laser pulse can be converted into a composite z-
pulse by splitting the beam into three and introducing different
delays for the three paths. Additionally, the delays should
be fine-tuned to provide π/2 phase shifts (λ/4) between the
second and the first, and between the third and the second
sub-pulses. The first and the third sub-pulses should be π/2
pulses, while the attenuation of the second sub-pulse can be
used to adjust the angle ϕ of the effective z-rotation.

In a simulation, we neglected the duration of the
composite z-pulses and assumed that the multi-pulse sequence
produces instantaneous phase kicks, following with the
repetition time τr 	 τF. The simulation shows that
the pulse sequence produces absolutely no effect on the excited
state population decay. This is consistent with what one
would expect, for a relatively slow modulation, from the
analysis based on the master equation [17]. The simplest
explanation might be that the atom, at any moment in time, is
fully described by the populations of its two states (which are
not changed by z-rotations), and that there are no correlations
between the atom and the radiation field that may be affected by
the z-rotations. Such a picture also seems to be consistent with
the observed exponential decay of the excited state population.
However, the multi-pulse train of phase kicks produces a
dramatic change of the emitted spectrum. The results are
shown in figure 6.

At ϕ = π (solid line in figure 6(a)), the spectrum consists
of two peaks at frequencies ±π/τ and smaller satellites
separated by the repetition frequency 2π/τ r. Upon decreasing
ϕ, the total spectral intensity becomes concentrated in the
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Figure 6. The spectrum of spontaneous emission when the atom is
irradiated by a multi-pulse sequence of phase kicks. The frequency
is in units of the repetition rate 1/τ r, where the interval between
z-pulses is τ r = τ F/25. (a) ϕ = 180◦ for the solid line and 90◦ for
the dashed line. (b) ϕ = 45◦, 30◦ and 15◦ respectively for the solid,
dashed and dotted lines.

central peak, shifted from the resonance frequency by ϕ/τ r,
which is equal to the average frequency of the phase rotation.
It is interesting that this frequency shift is not any integer
of the modulation frequency 2π/τ r but can be changed in a
continuous way by varying ϕ, as can be seen in figure 6(b). The
intensities of the central peak and the satellite peaks are given
by the squared Fourier coefficients of the periodic function:

f (t) = exp

{
iϕ

∫ t

0
dt ′

[∑
n

δ(t ′ − nτr) − 1/τr

]}
. (20)

Modification of the spectrum by a sequence of phase kicks
suggests that, in the process of spontaneous emission, there
exist long-lived phase correlations between the atom and the
radiation field. These correlations, quantified as

cjk = 〈
S+

j S−
k + S−

j S+
k

〉 = aja
∗
k + aka

∗
j , (21)

are presented in figure 7 for different frequency offsets of the
field oscillator. The correlations are shown for the case when
the atom is unperturbed by the pulse sequence, and calculated
for 106 field oscillators using the exact solution in section 3.
One can note that the correlation is surprisingly strong even for
the oscillators with frequencies well outside the central part of
the emission spectrum.

The field oscillators also remain strongly correlated
between themselves. These correlations are shown in figure 8.
At τ � τF, the absolute values of the correlations reach a
stationary value |cjk|/(|aj||ak|) = 2. Therefore, after a photon
is emitted, the state of the entire system cannot be fully
described by probabilities and does not have a simple classical
interpretation.
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Figure 7. Time dependence of correlations c0k (solid) and
populations |ak|2 (dotted) for the oscillators with the frequency
offsets (a) ωτ F = −0.1, (b) ωτ F = −1.0 and (c) ωτ F = −5.0.
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Figure 8. Time dependence of correlations cjk for the oscillators
with ωjτ F = −0.1 and ωkτ F = −0.2 (solid), −0.5 (dash-dot),
−1.0 (dashed) and −5.0 (dotted).

5. Emission by a pair of atoms. A perturbed
symmetry

In this section, we present the results for spontaneous emission
by a pair of atoms. It is supposed that the atoms are at a
very short distance from one another (much smaller than the
wavelength), so that the coupling constants between the atom
and field oscillators are the same for the two atoms. Dicke
analysed this problem [18] by assuming that a compact multi-
atom system is coupled to the radiation field by its total dipole
moment. Then, a symmetry-based approach has been used
to introduce ‘super-radiant’ and ‘non-radiant’ states of the
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system. The phenomenon of super-radiant emission by a two-
atom system has been observed experimentally [19]. The exact
solution for a multi-atom system coupled to a single radiation
mode is given in [20].

Let us denote the states with the excitation on the first or
on the second atom, with the field oscillators in their ground
states, as |10〉 and |01〉, respectively. The inclusion of a
second atom adds only one state to the single-photon subspace
{|�k〉}. The Hamiltonian (3) is modified by the addition of
one more ‘cross’ of the interaction constants. Again, we will
be using a pseudo-1D model with equal coupling constants.
According to [18], the symmetric (‘triplet’) linear combination
|t〉 = 2−1/2(|10〉+|01〉) is a fast decaying ‘super-radiant’
state, while the anti-symmetric (‘singlet’) combination |s〉 =
2−1/2(|10〉−|01〉) is a ‘non-radiant’ state with an infinite
lifetime. One can directly verify that the state |s〉 is an
eigenstate of the Hamiltonian. Our numerical simulation
confirmed this prediction. For the initial state |10〉 with
the first atom excited, the excited state population of the
first atom exponentially decays to a stationary value of 1

4 .
Simultaneously, the population of the excited state for the
second atom increases to the same stationary value of 1

4 . The
emitted spectrum is centred at the atoms’ resonance frequency,
and the linewidth is doubled compared to the emission by a
single atom. This behaviour is consistent with viewing the
initial state as a sum of two states: |10〉 = 2−1/2(|t〉+|s〉),
where one of the states, |t〉, has a doubled decay rate, while
the other state, |s〉, is stationary.

Two atoms in a close proximity experience a direct dipole–
dipole interaction with one another [21, 22]. As an example,
two hydrogen atoms at 10 nm, which is about one-tenth of the
wavelength of the hydrogen 2pz → 1s transition (∼121.6 nm),
will have a direct dipole–dipole interaction five times stronger
(in frequency units) than the linewidth of the hydrogen
spontaneous emission spectrum for this transition. Inclusion
of the dipole–dipole inter-atomic interaction in the simulation
shows (figure 9) that the interaction causes a fast exchange
of the atomic populations. At the same time, the stationary
populations of 1

4 do not change, as a consequence of the fact
that the dipole–dipole interaction does not spoil the symmetry,
and the anti-symmetric state |s〉 is still an eigenfunction of the
Hamiltonian. The corresponding emitted spectrum is shown
in figure 10. The line is shifted by the dipolar coupling, and its
width is doubled compared to the emission by a single atom.
In this simulation, it was assumed that the interatomic vector
is perpendicular to the atomic dipole moments. The latter
determined the sign of the dipolar coupling and the sign of the
corresponding frequency shift in the spectrum.

As a consequence of the system’s symmetry, the
anti-symmetric state |s〉 remains uncoupled from the
electromagnetic field and does not contribute to the spectrum.
Similar to the NMR experiments [23], where symmetry
breaking has been used to access the long-lived singlet states,
one may hope that a distortion of the symmetry in the two-
atom system will result in the light emission by the state
|s〉. The symmetry can be perturbed by a difference in the
resonance frequencies of the two atoms. When this difference
is smaller than the dipole–dipole coupling, it is averaged by
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Figure 9. Populations of the atomic excited states at dipolar
coupling ωd = 5 × 2 πη2/ε. The resonance frequencies of the two
atoms are equal. Thick solid line: population of the state with the
first atom excited, thin solid line: population of the state with the
second atom excited, dotted line: population decay for a single atom.
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Figure 10. The spectrum emitted at t = 8τ F for the dynamics shown
in figure 9.

the dipolar interaction and produces little effect. On the other
hand, when it is too large, the two atoms behave as independent
uncoupled systems. The most interesting behaviour happens
when the difference in the resonance frequencies is comparable
to the dipolar frequency. Simultaneous action of the dipolar
coupling and the frequency offset on the population dynamics
has been studied in [24] by using an approach based on the
master equation. However, the emitted spectrum has not been
analysed. Our results for the spectra are shown in figure 11
for the case when the resonance frequencies of the two atoms
are shifted by ±ωd. One can see that the spectra, for different
initial conditions, contain two peaks, one broad and one
narrow. The linewidth of the narrow peak is much less than the
natural linewidth ωF = 2π/τ F. Relative intensities of the broad
and narrow components depend on which of the two atoms has
been initially excited (figures 11(a) and (b)). It is interesting
that the spectra for these two initial conditions are practically
the same as the ones emitted when the atoms are initially
prepared in the superposition states |s〉 and |t〉 (figures 11(c)
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Figure 11. The spectra emitted by two atoms with resonance
frequencies ±ωd, where ωd is the dipolar coupling constant. The
initial conditions are as follows: (a) the atom with the resonance
frequency +ωd is excited, (b) the atom with the resonance frequency
−ωd is excited, (c) the anti-symmetric state |s〉, (d) the symmetric
state |t〉.

and (d)). The linewidth of the narrow spectral component
can be made arbitrary small by decreasing the difference in
resonance frequencies. However, such a decrease also reduces
the intensity of the narrow spectral component.

6. Conclusion

The computational power of modern computers allows direct
simulation of the process of spontaneous emission, if the
dynamics is limited by a single-photon subspace. With up
to 20k field oscillators, the finite discrete model provides
results which are very close to the thermodynamic limit,
especially in the pseudo-one-dimensional case. Explicit
dynamics, obtained as a time-dependent wavefunction of the
combined system: atom(s) + electromagnetic radiation field,
reveal many interesting details. A better understanding of this
complex collective motion is essential for designing methods
of manipulating such dynamics. In this paper, we presented
two simple examples demonstrating that both the frequency
and the linewidth of the emitted spectrum can be controlled.

Simulations similar to those described above will be
helpful in developing new spectroscopic techniques. They can
also be used in studying the fundamental process of quantum
decoherence. Field oscillators, even within a single-photon
subspace, can provide very complex ‘mixing’ dynamics and
serve as a thermodynamic bath with an explicit quantum-
mechanical description. Models of systems with a small
number of degrees of freedom, coupled to such a bath, can
be used for elucidating the role of environment in quantum
dynamics.
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