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The quantum state tomography on an NMR system

Jae-Seung Lee

Department of Physics, Korea Advanced Institute of Science and Technology,
373-1 Guseong-dong, Yuseong-gu, Dagjeon 305-701, South Korea

Received 7 July 2002; received in revised form 7 July 2002; accepted 24 October 2002
Communicated by P.R. Holland

Abstract

The quantum state tomography on an NMR system is analyzed. The evolution of a given system by its Hamiltonian during
the measurement can be understood as the inverse evolution of physical observables. In this way the NMR signal is expressed
as a composition of the ensemble averages of observables, which facilitates the build-up of the procedure for estimating the
density operator. The widely used procedure in which only single-qubit rotations are used to get information about the ensemble
averages of a quorum of observables is devoted and the lower bound for the number of experiments is obtained.
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1. Introduction tion of the states of quantum bits is required to verify
and increase the accuracy of quantum operations on a
A density operatop contains all the physically sig- ~ duantum computer. _ _
nificant information on a quantum system. If a density " the field of the NMR quantum information
operator is given, we can calculate the ensemble av- Processor [3,4], which leads the physical realization
erage(0) of any arbitrary operato© on the Hilbert ~ ©f & quantum computer up to present, the state tomog-
space of the system. Conversely, the density operator'@Phy has been used from the primary stage [5]. Al-
of the system can be estimated from ensemble aver-thoughthe method has been used in many experiments

ages of a set of observables which is calledua- (see Refs. [6-10]), there was no adequate analysis on
rum of observables [1]. This method of reconstructing e Process [11,12].
the density operator is callegliantum state tomogra- In this Letter, the quantum state tomography on an

phy. The quantum state tomography has been devel- NMR system is analyzed from a point of view that
oped with the advance of the quantum optics [2] and the Hamiltonian of a given system evolves the phys-
applied to other quantum systems, especially those ex-'Ca! observabk_as backward during the measure_ment.
pected to be quantum computers since the full descrip- UNitary operations on the system can be considered
as transforming the physical observables, too. In this
context, the NMR signal is expressed as a composi-
E-mail address: galley@mrm.kaist.ac.kr (J.-S. Lee). tion of the ensemble averages of observables and the
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procedure for estimating the density operator is exam- spin operators. Therefore, it is logical to take prod-
ined under the condition that only the combinations of ucts of a set of the identity and Pauli spin operators,
the single-spin rotations are used to change a set of ob-{1, o, 0, 0;}, @s a quorum of observables. Now, we
servables. The lower bound for the number of exper- calculate Eq. (1) explicitly for the Hamiltonians of
iments necessary to constructing the density operatorone-, two-, and three-spin systems on the assumption
is obtained in this case. that spins are weakly coupled, and present the formu-
lae of the density operator reconstruction for one- and
two-spin systems using the combinationswg® rota-
tions of a single spin about the axeandy as a set of
unitary transforms.

2. Statetomography on an NMR system

In NMR, the measured signal(¢+), by Fourier
transforming which the NMR spectrum is obtained, is
the time-varying current induced in a pick-up coil by
the rotating bulk magnetization as

3. Example: one-spin system

The HamiltoniarfH1 of a one-spin system consists

S(t) o tr[elH’,oelH’ Z(Ikx + l[ky)] 1) of a single Zeeman term, which can be written as
k 1 @

= —woy,,

where’H andp are the Hamiltonian of a spin system 2°°

and the density operator at the beginning of the mea- wherew is the resonance frequency of the nuclear spin
surement respectively, an@, , = 3ok, are the an-  in the external magnetic field. Since
gular momentum operator of spin whereo repre-
sents the Pauli spin operators. Since the componentsexp(ilf(,z,)
okx.y OF e pe!™t are measured, it is not obvious 2
what components g are measured. The situation is
the same when a unitary operatdrare applied to get
information about the ensemble averages of observ-
ables which cannot estimated naturally.

To circumvent the difficulties, we used the identity

tr[e—lHtpelHt Z([kx + l[ky):|

k
= tr|:pe’H’ Z(Ikx + llky)e_’H’i|.

k

1 coswt + o, sin ol
= — o -,
2 T2

the NMR signal is

S(0) o {trlpox] + 1 trlpoy}e' ™, ®)

which is oscillating at the frequeney and (o) and
(oy) are obtained in practice by Fourier transforming
S1(r) and integrating the real and imaginary spectra,
respectively. To reconstruct the density operator, we
need to know1) and(c,) which are not directly mea-
surable in NMR among a quorum of observables for
a single spin{1, 0y, 0y,0;}. The ensemble average
(1) is determined by fp] = 1 and(o;) can be mea-
This may be interpreted as the measured operatorssured through the rotations pfby X = exp(—: %o,)

are noty", (Ixy +1Ixy) bute!™ > (Iy +1 Ly )e ™7,
which can be calculated more easily than’ pe! 7t
when the Hamiltoniaf is specified. Likewise, the ef-
fect of U on p can be translated to that on observables.
Since it is obvious that which operators are measured
and smaller number of terms are involved in calcula-

tion, this approach is advantageous to establish and an-

alyze the state tomograhy on the NMR system.

The NMR Hamiltonian is usually composed of the
Zeeman term by external field and the spin—spin inter-
actions, which are expressed naturally in terms of the
spin angular momentum operators, that is, the Pauli

or Y = exp(—t%oy). As mentioned above, these uni-
tary transforms convert the observabigsando, into
o, and the signal becomes

$X (1) o ftrlpox] — ttrlpoz] e &
by X and
SY (@) o {trlpo.] + 1 tripoy]}e'” (5)

by Y. Froms?t, X, ands?, the ensemble averages of
operatorsr,, oy, ando, can be obtained

(o) = cavg(Re[ S1(0)], Re[S¥(0)]). (6a)



J.-S Lee/ Physics Letters A 305 (2002) 349-353 351

(oy) =cavg(lm[S1(0)], Im[SY(O)]), (6b) operator and this can be done by a set of unitary
_ _ 1 Y transform onp as a single-spin case. If we take as a
(oz) =¢ avg( Im[S (0)]’ Re[S (0)])’ (6c) set of unitary transform the standard nine experiments
where av@a, b) means an average af andb. The where the unitary transforms afd, X1, Y1, 1X,
factor ¢ depends on experimental details such as a 1y, xx, Xy, YX, and YY where the first and
receiver gain, the amount of spins and so on, but can second letters indicate the unitary transform applying
be set to a moderate number since the identity operatorto the first and second spin respectively, the ensemble
is not observed and the comparison of quantities such ayerages of all fifteen observables except the identity
as a fidelity does not require the absolute value. After gperator can be obtained from the measured quantities
determining the factor, the density operator of a  ysing Table 1, where the abbreviations come from

single spin can be estimated by the expression of the NMR signal after a unitary
1 transformU,
P = §1+ (0x)ox + (0x )0y + {(07)07. (7

SU(t) x (Sgr + Lsg)el(wl'i‘ﬂ']lz)t
+ (S5 + 185t (12!
+ (Sgr + ngi)e’(wZ'*‘ﬂflz)t

The Hamiltonian of a weakly interacting two-spin + (Sif + lsg)el(wzfnllz)t. (10)
system is " '

4. Example: two-spin system

w Since each observable is measured several times

1 w2 T . . .

Ho= 5 0kt ozt 5112011022., (8) through the standard nine experiments, it can be ex-
pected that some subset of experiments are enough to

\t/vhereljlzt;‘s e|1_|sca!latlr cpuplmg contstant.hS ”lﬁe allthree estimatep. Actually four experiments among the stan-
€rms in the Hamiitonian commute each other, We can g set, for exampl&'l, Y1, 1X, and1Y, are suffi-

easily calculate Eq. (1) to get cient to reconstruch.
ST (1) o {[tr(powy) + tr(poreoz:) ]
+1 [tr(palv) +tr(po1y02;) ]}el(‘”ﬁ”m)t

{[tr(polx) —tr(po1,02;) ]
tr(po1y) — tr(pgly@z)]}el<w1—ﬂflz>f For general-spin systems, we will just mention

5. Discussion

[ some features of the NMR signal and procedure of

+ltr(po2:) + r(po1:02:) the density operator reconstruction with a three-spin
+1[tr(pozy) + tr(por.oy) |} (212! system. The Hamiltonian is
+{[tr(po2y) — tr(po1.02.)] Moo @1 @2 w3
+1[tr(poay) — tr(porzoay) | Je! @22 TR T
(9) + %J1201ZJZZ + %113011032, + %12302z03z~
whereo1, =01, ® 1o, 02y = 11 ® o2y, €tc., andl; (11)

andl; mean identity operators for the first and second
spins, respectively. Notice that the coupling term
7 J12211; I, splits the spectral lines and makas oz,
01,02;, 01;02¢, andoy,02, observable.

Since the quorum of observables for two-spin
system is

From Eq. (1), the NMR signal is composed of 12
components oscillating at frequencies, + 7 J12 +
wJ13, w2 + wJio £ wJr3, and w3 + wJ13 £+ w23
and the coefficient of the part varying at frequency
w1+ mJ12 + w J13is given by

(L 0, 0y, 02} ® {1, 0%, 0y, 02}, tr{p[(o1c + 01:02; + 01:03; + 01.02:03;)

. 1(0O1y 01yO0: 0140 01y0?2;0: .
it is necessary to measure the ensemble averages T ‘(O T 0102 + 01,03 + 01,02 )]}

of sixteen observables for constructing the density (22)
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Table 1

The relations between the ensemble averages of a quorum of observables in a two-spin system and the 72 quantities measured by a set of nin
experiments. The superscript means the unitary operation performed on the density operator and the subscript indicates which spectral line the
datum comes from andandi means real and imaginary parts, respectively

Operator Formula
o1 avg(Sih S5t Sit syt siX. 53X siY . s sEX L sEX s s5Y)
o1y avg(sit. 53t st syt s s3t st sal spX sy st sy
o1, avg(—SFL —sXt g7l g¥l _gXX _gXX _gXKV _gXV gYX §IX ¥V sIY)
o2 avg(S3h S5 Syt St I SEE s3X sg X sy s X s3X L)
o2y avg(Sgh S5 St syt syt spt sl sal sEY L siT sy sy
o2, avg(—S3X, —s3X sV g1V _gXX _gXX XV XV _g¥X _grX ¥V siY)

0102 avg(—Sh syt —siY. 53l —sEY s3Y . —s3X 1)

01102y avg(—syl skl s1X _glX XX _gXX _g¥Y s¥Y)

o1,02; avg(S, — 837 S —S3L SEX . —8u X ST sy

01,02 avg(syt. - syt —si . 53 SEX . —spX ST s3Y)

01,02y avg(s3L, —spL s1X _gIX XV _gXV §YX _gkX)

a1,02; avg(S3h =31 St =Syt —SEX S 83T - sp))

01,02 avg(S3r. —S 53, =3¢ sEY . =53 ST s3Y)

01,02, avg(sit —siL s1Y —si¥ XX XX TX _gkX)

017027 an(fsigl’ Ségl’ Sj)L/rl’ 75%;1’ 75%1‘)(’ Sl]l-ix’ S%;Y’ 751]1-2/)

Notice that three-spin product operateigor, 03, and but this estimation does not mean that dlH41 prod-
01,02,03; are measured due to the coexistence of two uct operators can be measured with the set of experi-
coupling termsr J12211, I2, andn J13211, I3, and this ments, though the functiorf 3(2k) is rapidly increas-
makes them possible to get information on the corre- ing with k.

lation among three spins from NMR spectra and to In the above, it was assumed that all spin—spin
estimate the density operator. Likewise, inraspin couplings are resolved but in practice, some cou-
system,k-spin product operators (< n) can be ob- pling Hamiltonians may not be available since they
served by virtue ok — 1 coupling Hamiltonians, and  do not exist or are too small to be resolvable. If a
the ensemble averages o(1;§g}) k-spin product oper-  spin—spin coupling is missing, the correlations be-
ators can be obtained from each resonance. If the com-tween the two spins involved cannot be obtained by
binations of single spin rotations, which transforkas ~ the above method. We need more complicated uni-
spin product operators intb-spin ones, are used to tary transforms such as a quantum swap operation to
convert the observables, the number of them measuredget information on the ensemble averages of those ob-
in each experiment does not change. Since there areservables and this may inevitably degrade the quality
3"(’;) k-spin product operators, the number of experi- of the measured values. Inversely, some set of uni-

ments necessary to measure all of them is tary transforms can be devised, which allow to mea-
sure a quorum of observables in experiments fewer

H?," (n)}/[Zn (n Bl 1)]—‘ = 13%/(2k)7. than 3'/(2n), but those operations may lower the ac-
k k-1 curacy of the density operator due to the inexact-
Therefore, we need a set of at 1e@3t/(2n)] experi- ness performing them and the decoherence during

ments for a valid construction of the density operator them.
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