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The quantum state tomography on an NMR system
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Abstract

The quantum state tomography on an NMR system is analyzed. The evolution of a given system by its Hamiltonian during
the measurement can be understood as the inverse evolution of physical observables. In this way the NMR signal is expressed
as a composition of the ensemble averages of observables, which facilitates the build-up of the procedure for estimating the
density operator. The widely used procedure in which only single-qubit rotations are used to get information about the ensemble
averages of a quorum of observables is devoted and the lower bound for the number of experiments is obtained.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

A density operatorρ contains all the physically sig-
nificant information on a quantum system. If a density
operator is given, we can calculate the ensemble av-
erage〈O〉 of any arbitrary operatorO on the Hilbert
space of the system. Conversely, the density operator
of the system can be estimated from ensemble aver-
ages of a set of observables which is called aquo-
rum of observables [1]. This method of reconstructing
the density operator is calledquantum state tomogra-
phy. The quantum state tomography has been devel-
oped with the advance of the quantum optics [2] and
applied to other quantum systems, especially those ex-
pected to be quantum computers since the full descrip-
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tion of the states of quantum bits is required to verify
and increase the accuracy of quantum operations on a
quantum computer.

In the field of the NMR quantum information
processor [3,4], which leads the physical realization
of a quantum computer up to present, the state tomog-
raphy has been used from the primary stage [5]. Al-
though the method has been used in many experiments
(see Refs. [6–10]), there was no adequate analysis on
the process [11,12].

In this Letter, the quantum state tomography on an
NMR system is analyzed from a point of view that
the Hamiltonian of a given system evolves the phys-
ical observables backward during the measurement.
Unitary operations on the system can be considered
as transforming the physical observables, too. In this
context, the NMR signal is expressed as a composi-
tion of the ensemble averages of observables and the
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procedure for estimating the density operator is exam-
ined under the condition that only the combinations of
the single-spin rotations are used to change a set of ob-
servables. The lower bound for the number of exper-
iments necessary to constructing the density operator
is obtained in this case.

2. State tomography on an NMR system

In NMR, the measured signalS(t), by Fourier
transforming which the NMR spectrum is obtained, is
the time-varying current induced in a pick-up coil by
the rotating bulk magnetization as

(1)S(t) ∝ tr

[
e−ıHt ρeıHt

∑
k

(Ikx + ıIky)

]
,

whereH andρ are the Hamiltonian of a spin system
and the density operator at the beginning of the mea-
surement respectively, andIkx,y = 1

2σkx,y are the an-
gular momentum operator of spink, whereσ repre-
sents the Pauli spin operators. Since the components
σkx,y of e−ıHt ρeıHt are measured, it is not obvious
what components ofρ are measured. The situation is
the same when a unitary operatorU are applied to get
information about the ensemble averages of observ-
ables which cannot estimated naturally.

To circumvent the difficulties, we used the identity

tr

[
e−ıHt ρeıHt

∑
k

(Ikx + ıIky)

]

= tr

[
ρeıHt

∑
k

(Ikx + ıIky)e
−ıHt

]
.

This may be interpreted as the measured operators
are not

∑
k(Ikx + ıIky) buteıHt

∑
k(Ikx + ıIky)e−ıHt ,

which can be calculated more easily thane−ıHt ρeıHt

when the HamiltonianH is specified. Likewise, the ef-
fect ofU onρ can be translated to that on observables.
Since it is obvious that which operators are measured
and smaller number of terms are involved in calcula-
tion, this approach is advantageous to establish and an-
alyze the state tomograhy on the NMR system.

The NMR Hamiltonian is usually composed of the
Zeeman term by external field and the spin–spin inter-
actions, which are expressed naturally in terms of the
spin angular momentum operators, that is, the Pauli

spin operators. Therefore, it is logical to take prod-
ucts of a set of the identity and Pauli spin operators,
{1, σx, σy, σz}, as a quorum of observables. Now, we
calculate Eq. (1) explicitly for the Hamiltonians of
one-, two-, and three-spin systems on the assumption
that spins are weakly coupled, and present the formu-
lae of the density operator reconstruction for one- and
two-spin systems using the combinations ofπ/2 rota-
tions of a single spin about the axesx andy as a set of
unitary transforms.

3. Example: one-spin system

The HamiltonianH1 of a one-spin system consists
of a single Zeeman term, which can be written as

(2)H1 = 1

2
ωσz,

whereω is the resonance frequency of the nuclear spin
in the external magnetic field. Since

exp

(
±ı

ω

2
σzt

)
= 1 cos

ωt

2
± σz sin

ωt

2
,

the NMR signal is

(3)S1(t) ∝ {
tr[ρσx] + ı tr[ρσy]

}
eıωt ,

which is oscillating at the frequencyω and 〈σx〉 and
〈σy〉 are obtained in practice by Fourier transforming
S1(t) and integrating the real and imaginary spectra,
respectively. To reconstruct the density operator, we
need to know〈1〉 and〈σz〉 which are not directly mea-
surable in NMR among a quorum of observables for
a single spin,{1, σx, σy, σz}. The ensemble average
〈1〉 is determined by tr[ρ] = 1 and〈σz〉 can be mea-
sured through the rotations ofρ by X = exp(−ı π

2 σx)

or Y = exp(−ı π
2 σy). As mentioned above, these uni-

tary transforms convert the observablesσx andσy into
σz and the signal becomes

(4)SX(t) ∝ {
tr[ρσx ] − ı tr[ρσz]

}
eıωt

by X and

(5)SY (t) ∝ {
tr[ρσz] + ı tr[ρσy]

}
eıωt

by Y . FromS1, SX , andSY , the ensemble averages of
operatorsσx , σy , andσz can be obtained

(6a)〈σx〉 = c avg
(
Re

[
S1(0)

]
,Re

[
SX(0)

])
,
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(6b)〈σy 〉 = c avg
(
Im

[
S1(0)

]
, Im

[
SY (0)

])
,

(6c)〈σz〉 = c avg
(− Im

[
S1(0)

]
,Re

[
SY (0)

])
,

where avg(a, b) means an average ofa and b. The
factor c depends on experimental details such as a
receiver gain, the amount of spins and so on, but can
be set to a moderate number since the identity operator
is not observed and the comparison of quantities such
as a fidelity does not require the absolute value. After
determining the factorc, the density operator of a
single spin can be estimated by

(7)ρ = 1

2
1 + 〈σx〉σx + 〈σx〉σx + 〈σz〉σz.

4. Example: two-spin system

The Hamiltonian of a weakly interacting two-spin
system is

(8)H2 = ω1

2
σ1z + ω2

2
σ2z + π

2
J12σ1zσ2z,

whereJ12 is a scalar coupling constant. Since all three
terms in the Hamiltonian commute each other, we can
easily calculate Eq. (1) to get

S11(t) ∝ {[
tr(ρσ1x) + tr(ρσ1xσ2z)

]
+ ı

[
tr(ρσ1y) + tr(ρσ1yσ2z)

]}
eı(ω1+πJ12)t

+ {[
tr(ρσ1x) − tr(ρσ1xσ2z)

]
+ ı

[
tr(ρσ1y) − tr(ρσ1yσ2z)

]}
eı(ω1−πJ12)t

+ {[
tr(ρσ2x) + tr(ρσ1zσ2x)

]
+ ı

[
tr(ρσ2y) + tr(ρσ1zσ2y)

]}
eı(ω2+πJ12)t

+ {[
tr(ρσ2x) − tr(ρσ1zσ2x)

]

(9)

+ ı
[
tr(ρσ2y) − tr(ρσ1zσ2y)

]}
eı(ω2−πJ12)t ,

whereσ1x ≡ σ1x ⊗ 12, σ2x ≡ 11 ⊗ σ2x , etc., and11
and12 mean identity operators for the first and second
spins, respectively. Notice that the coupling term
πJ122I1zI2z splits the spectral lines and makesσ1xσ2z,
σ1yσ2z, σ1zσ2x , andσ1zσ2y observable.

Since the quorum of observables for two-spin
system is

{1, σx, σy, σz} ⊗ {1, σx, σy, σz},
it is necessary to measure the ensemble averages
of sixteen observables for constructing the density

operator and this can be done by a set of unitary
transform onρ as a single-spin case. If we take as a
set of unitary transform the standard nine experiments
where the unitary transforms are11, X1, Y1, 1X,
1Y , XX, XY , YX, and YY where the first and
second letters indicate the unitary transform applying
to the first and second spin respectively, the ensemble
averages of all fifteen observables except the identity
operator can be obtained from the measured quantities
using Table 1, where the abbreviations come from
the expression of the NMR signal after a unitary
transformU ,

SU(t) ∝ (
SU

1r + ıSU
1i

)
eı(ω1+πJ12)t

+ (
SU

2r + ıSU
2i

)
eı(ω1−πJ12)t

+ (
SU

3r + ıSU
3i

)
eı(ω2+πJ12)t

(10)+ (
SU

4r + ıSU
4i

)
eı(ω2−πJ12)t .

Since each observable is measured several times
through the standard nine experiments, it can be ex-
pected that some subset of experiments are enough to
estimateρ. Actually four experiments among the stan-
dard set, for exampleX1, Y1, 1X, and1Y , are suffi-
cient to reconstructρ.

5. Discussion

For generaln-spin systems, we will just mention
some features of the NMR signal and procedure of
the density operator reconstruction with a three-spin
system. The Hamiltonian is

H3 = ω1

2
σ1z + ω2

2
σ2z + ω3

2
σ3z

(11)

+ π

2
J12σ1zσ2z + π

2
J13σ1zσ3z + π

2
J23σ2zσ3z.

From Eq. (1), the NMR signal is composed of 12
components oscillating at frequencies,ω1 ± πJ12 ±
πJ13, ω2 ± πJ12 ± πJ23, and ω3 ± πJ13 ± πJ23
and the coefficient of the part varying at frequency
ω1 + πJ12 + πJ13 is given by

(12)

tr
{
ρ
[
(σ1x + σ1xσ2z + σ1xσ3z + σ1xσ2zσ3z)

+ ı(σ1y + σ1yσ2z + σ1yσ3z + σ1yσ2zσ3z)
]}

.
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Table 1
The relations between the ensemble averages of a quorum of observables in a two-spin system and the 72 quantities measured by a set of nine
experiments. The superscript means the unitary operation performed on the density operator and the subscript indicates which spectral line the
datum comes from andr andi means real and imaginary parts, respectively

Operator Formula

σ1x avg
(
S11

1r
, S11

2r
, SX1

1r
, SX1

2r
, S1X

1r
, S1X

2r
, S1Y

1r
, S1Y

2r
, SXX

1r
, SXX

2r
, SXY

1r
, SXY

2r

)
σ1y avg

(
S11

1i
, S11

2i
, SY1

1i
, SY1

2i
, S1X

1i
, S1X

2i
, S1Y

1i
, S1Y

2i
, SYX

1i
, SYX

2i
, SYY

1i
, SYY

2i

)
σ1z avg

(−SX1
1i

,−SX1
2i

, SY1
1r

, SY1
2r

,−SXX
1i

,−SXX
2i

,−SXY
1i

,−SXY
2i

, SYX
1r

, SYX
2r

, SYY
1r

, SYY
2r

)
σ2x avg

(
S11

3r
, S11

4r
, SX1

3r
, SX1

4r
, SY1

3r
, SY1

4r
, S1X

3r
, S1X

4r
, SXX

3r
, SXX

4r
, SYX

3r
, SYX

4r

)
σ2y avg

(
S11

3i
, S11

4i
, SX1

3i
, SX1

4i
, SY1

3i
, SY1

4i
, S1Y

3i
, S1Y

4i
, SXY

3i
, SXY

4i
, SYY

3i
, SYY

4i

)
σ2z avg

(−S1X
3i

,−S1X
4i

, S1Y
3r

, S1Y
4r

,−SXX
3i

,−SXX
4i

, SXY
3r

, SXY
4r

,−SYX
3i

,−SYX
4i

, SYY
3r

, SYY
4r

)
σ1xσ2x avg

(−SY1
3r

, SY1
4r

,−S1Y
1r

, S1Y
2r

,−SXY
1r

, SXY
2r

,−SYX
3r

, SYX
4r

)
σ1xσ2y avg

(−SY1
3i

, SY1
4i

, S1X
1r

,−S1X
2r

, SXX
1r

,−SXX
2r

,−SYY
3i

, SYY
4i

)
σ1xσ2z avg

(
S11

1r
,−S11

2r
, SX1

1r
,−SX1

2r
, SYX

3i
,−SYX

4i
,−SYY

3r
, SYY

4r

)
σ1yσ2x avg

(
SX1

3r
,−SX1

4r
,−S1Y

1i
, S1Y

2i
, SXX

3r
,−SXX

4r
,−SYY

1i
, SYY

2i

)
σ1yσ2y avg

(
SX1

3i
,−SX1

4i
, S1X

1i
,−S1X

2i
, SXY

3i
,−SXY

4i
, SYX

1i
,−SYX

2i

)
σ1yσ2z avg

(
S11

1i
,−S11

2i
, SY1

1i
,−SY1

2i
,−SXX

3i
, SXX

4i
, SXY

3r
,−SXY

4r

)
σ1zσ2x avg

(
S11

3r
,−S11

4r
, S1X

3r
,−S1X

4r
, SXY

1i
,−SXY

2i
,−SYY

1r
, SYY

2r

)
σ1zσ2y avg

(
S11

3i
,−S11

4i
, S1Y

3i
,−S1Y

4i
,−SXX

1i
, SXX

2i
, SYX

1r
,−SYX

2r

)
σ1zσ2z avg

(−SX1
1i

, SX1
2i

, SY1
1r

,−SY1
2r

,−S1X
3i

, S1X
4i

, S1Y
3r

,−S1Y
4r

)

Notice that three-spin product operatorsσ1xσ2zσ3z and
σ1yσ2zσ3z are measured due to the coexistence of two
coupling termsπJ122I1zI2z andπJ132I1zI3z and this
makes them possible to get information on the corre-
lation among three spins from NMR spectra and to
estimate the density operator. Likewise, in ann-spin
system,k-spin product operators (k � n) can be ob-
served by virtue ofk − 1 coupling Hamiltonians, and
the ensemble averages of 2

(
n−1
k−1

)
k-spin product oper-

ators can be obtained from each resonance. If the com-
binations of single spin rotations, which transformsk-
spin product operators intok-spin ones, are used to
convert the observables, the number of them measured
in each experiment does not change. Since there are
3k

(
n
k

)
k-spin product operators, the number of experi-

ments necessary to measure all of them is⌈[
3k

(
n

k

)]/[
2n

(
n − 1

k − 1

)]⌉
= �3k/(2k)�.

Therefore, we need a set of at least�3n/(2n)� experi-
ments for a valid construction of the density operator

but this estimation does not mean that all 4n − 1 prod-
uct operators can be measured with the set of experi-
ments, though the function 3k/(2k) is rapidly increas-
ing with k.

In the above, it was assumed that all spin–spin
couplings are resolved but in practice, some cou-
pling Hamiltonians may not be available since they
do not exist or are too small to be resolvable. If a
spin–spin coupling is missing, the correlations be-
tween the two spins involved cannot be obtained by
the above method. We need more complicated uni-
tary transforms such as a quantum swap operation to
get information on the ensemble averages of those ob-
servables and this may inevitably degrade the quality
of the measured values. Inversely, some set of uni-
tary transforms can be devised, which allow to mea-
sure a quorum of observables in experiments fewer
than 3n/(2n), but those operations may lower the ac-
curacy of the density operator due to the inexact-
ness performing them and the decoherence during
them.
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6. Conclusion

The quantum state tomography on an NMR system
was examined by expressing the NMR signal as a
composition of the ensemble averages of observables
and the case in which all couplings are resolved and
the combinations of single spin operations are used
to obtain the information was devoted. The approach
developed here should help to make clear the origin
of the measured quantities and to make easy the
establishment of the relation required to the density
operator reconstruction in NMR.
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