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The Bohai Sea was formed by subsidence during the Cenozoic. Some 2000–3000 m of fluvial, lacustrine and
marine sediments has been deposited in this basin. Previous studies focused mainly on the transgression his-
tory, with little examination of orbital variation in relation to other areas within the Asian monsoon domain.
Here, we present the late Quaternary results of a new borehole in the south Bohai Sea. Optically stimulated
luminescence and radiocarbon dating, which provide concordant age estimates, were employed to generate
an initial chronology for the borehole. After refining the chronology through astronomical tuning, the results
showed that: (1) the grain size variation represents Asian monsoon intensity which was dominated by both
solar insolation (major) and global ice volume (minor) forcing; (2) the magnetic susceptibility indicates river
incision processes which were sensitive to orbital tilt with influence from solar insolation; (3) the vegetation
coverage responded to global ice volume coupled obliquity changes; and that (4) neither external nor inter-
nal factors could dominate the paleoenvironmental evolution on orbital timescales in an independent way,
and they are both integrated in a complex pattern. We conclude that three different astronomical rhythms
have affected coastal evolution, and that the sedimentary records in the south Bohai Sea, China, result from
the nonlinear interaction and the complex response to driving processes.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The Asian Monsoon plays an important role in transporting large
quantities of heat and moisture to the most populated regions of
the world. These heat and moisture values, having profound effects
on social processes especially in the agriculture era (e.g. Cook et al.,
2010; Yancheva et al., 2007; Zhang et al., 2008a), have attracted
great attention in palaeoenvironmental studies over the past few
decades (e.g. Wang, 2006). Due to the limitation of relevant modern
records, the studies on monsoon-modulated heat and moisture varia-
tion have been conducted using proxy indicators such as Chinese
loess (e.g. An et al., 1990, 2001; Ding et al., 1995; Guo et al., 2002;
Kukla, 1987; Liu, 1985; Liu and Ding, 1993; Sun et al., 2006, 2012),
cave records (e.g. Cheng et al., 2009; Wang et al., 2001, 2005, 2008;
Zhang et al., 2008a), tree rings (e.g. Cook et al., 2010; Shao et al.,
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2010; Treydte et al., 2006), lacustrine sediments (e.g. An et al.,
2011; Xiao et al., 2009; Yancheva et al., 2007) and marine sediments
(e.g. Ao et al., 2011; Clemens and Prell, 2003; Tian et al., 2008; Wang
et al., 1999; Wehausen and Brumsack, 2002), to extend our under-
standing of the evolution of the monsoon system.

Although there have been numerous studies conducted on Asian
monsoon evolution during the past thirty years, its mechanism is
still in keenly debated. Depending upon proxy records studied,
there are two scenarios most commonly invoked to describe the
mechanism of Asian monsoon evolution: internal vs. external forcing
models.

The internal forcing of Asian monsoon evolution stipulates that
the global ice volume plays a controlling influence on the Asian
monsoon by modulating the thermodynamic difference between the
Asian continent and the Pacific Ocean (An et al., 1990). During an
interglacial stage, the enlarged pressure gradient between continent
and ocean enables the monsoon to carry greater fluxes of heat and
moisture from ocean to continent, while during a glacial stage, the
weakened monsoon causes smaller fluxes of heat and moisture
from ocean to continent. Variations of global ice volume can influence
tary records to three astronomical rhythms and the Asian monsoon,
l. (2012), doi:10.1016/j.palaeo.2012.02.020
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the Asian monsoon in three ways: (1) Global ice volume affects global
sea levels and varies relative surface areas between continent and
ocean. The increased continental surface area during a glacial stage
can increase the loss of heat and moisture being transported from
ocean to continent (Wang, 1999). (2) Global ice volume can affect
global temperature. Decreased sea surface temperature can reduce
evaporation and thus decrease moisture (Guo et al., 2002, 2004).
(3) The extended Arctic ice sheet may strengthen the Siberian-
Mongolian Highs during a glacial stage, and increase the Asian winter
monsoon and reduce the heat and moisture carried from ocean (Ding
et al., 1994). Through these possible responses, the Asian monsoon
documented in various sediments is considered to be dominated by
100-ka cycles and many inland-related records support this inference
(e.g. An et al., 1990, 2001, 2011; Ding et al., 1995; Kukla, 1987; Liu,
1985; Liu and Ding, 1993; Liu et al., 1999; Sun et al., 2006, 2012;
Wang, 1999; Wang et al., 1999; Wehausen and Brumsack, 2002).

The external model of Asian monsoon evolution stresses the
importance of variation in solar insolation as the direct driving factor
controlling climatic changes. According to this model, the monsoon is
interpreted as an intertropical convergence zone (ITCZ) substantially
away from the equator (more than 10°) and the existence of ITCZ
does not have to rely on land–sea contrast which only provides a
favorable longitudinal location for the ITCZ (Chao and Chen, 2001).
The ITCZ with maximal solar heating is one of the most intensive sup-
pliers of vapor and energy from ocean to atmosphere (Pierrehumbert,
2000). The ascending flow from the ITCZ makes up the upward
branch of monsoon circulation, which brings about aridity to the
region of its descending flow and maximal precipitation to the region
of its ascending flow (Webster et al., 1998). The ascending solar inso-
lation increases the sea surface temperature which causes the north-
ward movement of ITCZ and strengthened Asian monsoon, while the
descending solar insolation causes the southward movement of the
ITCZ that, coupled with the decreased sea surface temperature,
weakens the Asian monsoon. Because in this scenario the Asian
monsoon is directly controlled by solar insolation, its variability is
assumed to be predominantly expressed as precessional cycles, i.e.
19–23 ka, and this inference has been supported by many low-
latitude studies (e.g. Wang et al., 2001, 2005, 2008; Cheng et al.,
2009; Ao et al., 2011).

However, in reality, Asian monsoon is likely controlled both by
internal and external factors (Wang, 2009). The record from the Indian
Ocean showed that themonsoonwas sensitive to the latent heat export
from the southern subtropical Indian Ocean (Clemens et al., 1991) and
was controlled mainly by obliquity rather than precession (Clemens
and Prell, 2003). Through analyzing the phase difference between the
south China cave δ18O (Cheng et al., 2009; Wang et al., 2001, 2008)
and maximum northern hemisphere summer insolation, Clemens et
al. (2010) argued that the “pure” Asian monsoon proxy, i.e. the south
China cave δ18O, essentially combined the influence of summer
monsoon (major) and winter temperature (minor) forcing. Thus, the
Asian monsoon fundamentally associates the complex behavior of
atmosphere and ocean, and it is critical to obtain more evidences from
various environments to help understanding the complexity of
monsoonal climate.

The Bohai Sea is a semi-enclosed interior continental shelf sea of
China, which is connected to the northern Yellow Sea by the narrow
Bohai Strait with an average water depth of 18 m (IOCAS, 1985).
During the past thirty years, the sediments of Bohai Sea have been
involved in environmental and geological research, and these studies
mainly focused on sea level changes and its environmental impacts
(Liu, 2009). The results on orbital timescales with regard to the Late
Quaternary are contained in IOCAS (1985), Liu (2009) and references
therein: (1) sea level history has been recorded in alternations
between terrestrial andmarine sediments and controlled by glaciations
and deglaciations; (2) transgressions are evident at the beginning of
interglacial stages including the Holocene, marine isotope stage 3
Please cite this article as: Yi, L., et al., Late Quaternary linkage of sedimen
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(MIS3) and MIS5; and (3) regressions are recorded at the beginning of
glacial stages, MIS2 and MIS4.

Because the Bohai Sea is close both to the Asian mainland and the
Pacific Ocean and is influenced both by the Siberian–Mongolian Highs
and the ITCZ (Fig. 1), it is possible that the deposits in Bohai Sea
record the interaction between various driving factors. However, in
previous studies little attention has been paid in this potential inter-
action. Therefore, to generate more evidence correlating palaeoenvir-
onmental evolution and to detect the potential interaction between
various driving factors on orbital timescales, we chose a new borehole
drilled in the south Bohai Sea in 2007 for the present study of the late
Quaternary. Optically stimulated luminescence and radiocarbon
dating were employed to produce the borehole's chronology. After
refined the chronology through astronomical tuning, we attempted to
reveal the potential relationship between three astronomical rhythms
(eccentricity, obliquity and precession) and the Asian monsoon and
provide evidence for the complex behavior of atmosphere and ocean.

2. Study area and materials

2.1. Geological settings

The south Bohai Sea (Laizhou Bay, Fig. 1) is located between the
branches of the Yi-Shu Rift (Gao et al., 1980; Zhang et al., 2003).
The period from the Neogene to the present has been marked by
tectonic quiescence and stable sedimentation (Wu et al., 2006; Yu
et al., 2008). Sedimentary alternations were mainly between deltaic,
estuarine and tidal plain systems (Xue and Ding, 2008). During
regressions, the exposed area of the south Bohai Sea would have
been replaced in part by diluvial fan (Chen et al., 1991), loess/sandy
dune (Chen et al., 1991; Yu et al., 1999; Zhao, 1991, 1995) or alluvial
fan (Meng et al., 1999).

The sediments in the south Bohai Sea were deposited by several
local rivers including the Xiaoqinghe River, Mihe River and Weihe
River (Xue and Ding, 2008). All of these rivers, only 100–300 km long
originate in the Luzhong Mountain Range where the elevation is 800–
1600 m. The average slope for the whole catchments is 0.05–0.11‰.

2.2. Borehole Lz908

Borehole Lz908 is located on the south coast of the Bohai Sea,
China (37°09′N, 118°58′E; elevation 6 m; Fig. 1). The drilling position
was covered by seawater until the middle of the twentieth century.
The length of core is 101.3 m and the recovery rate is 75%. The
upper 54 m contained fluvial and coastal sediments and were chosen
here for study. According to the fossil foraminifera assemblages of
Lz908 core, Yao et al. (2010) identified three transgression layers
and the depth was modified in this paper: 2.0–11.3 m (transgression
1, T-1), 14–28.2 m (transgression 2, T-2) and36.4–50.3 m (transgression
3, T-3). The sedimentary descriptions are as follows (Fig. 2):

2.0–4.9 m, yellowish grey fine sand, high water content and
mollusk debris. (Tidal flat-Delta). 9–10.2 m, dust-color fine sand,
high water content and mollusk debris. (Intertide-Delta). 10.2–
10.8 m, dark-grey and black organic-rich clay, mollusk and vegetation
debris. (Lagoon). 10.8–15.2 m, yellow–grey coarse silt, red patches
and dark-grey organic-rich veins. (Lagoon-Alluvial fan). 15.2–19.2 m,
mahogany and yellowish grey clay–silt, high water content and
mollusk debris. (Delta-Alluvial fan). 19.2–22.5 m, yellowish grey
coarse silt, high water content, mollusk debris and red patches.
(Intertide-Delta). 22.5–26.2 m, dark red and yellowish grey clay, and
red patches. (Intertide-Delta). 26.2–27.4 m, yellowish grey coarse silt,
high water content, and mollusk debris and red patches. (Intertide-
Delta). 27.4–31.3 m, dust-color clay, mollusk debris and very hard.
(Intertide-Delta). 31.3–34.2 m, yellowish grey clay–silt, vegetation and
mollusk debris, and red patches. (Lagoon-Delta). 34.2–36.2 m, dust-
color clay, carbonate nodules and mollusk debris, and very hard.
tary records to three astronomical rhythms and the Asian monsoon,
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Fig. 1. (A) Location, climatic systems, and sites mentioned in the text. The East Asian Summer Monsoon (EASM), East Asian Winter Monsoon (EAWM) and the Westerly system
predominantly control the regional climate. SAM is an abbreviation of South Asianmonsoon. (B) Shoreline changes of each transgression relate to the late Pleistocene. Lines represent
the margins of transgression-1 (T-1), transgression-2 (T-2) and transgression (T-3), respectively. It is modified from Zhao (1986) andWang et al. (1986). (C) Geographical settings,
drainage system, the position of borehole Lz908 (▲) and the area where surface sediments were taken. (D) Distribution of faults within the study area. (E) Stream gradient of the
Mihe River from the Luzhong Mountain Range to the south Bohai Sea.

3L. Yi et al. / Palaeogeography, Palaeoclimatology, Palaeoecology xxx (2012) xxx–xxx
(Lagoon-Delta). 36.2–38.9 m, mottled fine silt, and dark-grey organic-
rich veins. (Intertide-Delta). 38.9–41.9 m, dust-color coarse silt, olive-
grey carbonate veins and nodules, and very hard. (Lagoon-Delta).
41.9–44.6 m, mahogany fine silt, olive-grey veins, and very hard.
(Lagoon-Delta). 44.6–48.2 m, yellowish grey coarse silt, high water
content, and mollusk debris. (Intertide-Delta). 48.2–51.4 m, grey fine
silt, pores and mollusk debris. (Intertide-Delta). 51.4–54.3 m, grey and
yellow-grey coarse silt, carbonate nodules and very hard. (Delta-Lake).

2.3. Surface sediments

Thirty-six marine surface sediment samples were collected around
the estuarine area outside the Xiaoqinghe river mouth (Fig. 1) during
Jan 23rd–29th, 2007, by the Institute of Oceanology, Chinese Academy
of Sciences. During the field investigation, the weather was calm with
little wave activity (Chen et al., 2009; Du et al., 2008).

3. Methodology

3.1. Experiments

Three proxy indices were employed, grain size, magnetic suscepti-
bility and tree-pollen abundance, to infer palaeoenviromental
Please cite this article as: Yi, L., et al., Late Quaternary linkage of sedimen
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changes (Fig. 2). The interval between grain size samples is about
2–5 cm, and a total of 1771 samples were measured. The grain size
samples were pretreated with 10–20 ml of 30% H2O2 to remove
organic matter, washed with 10% HCl to remove carbonates, rinsed
with deionized water, and then placed in an ultrasonic vibrator for
several minutes to facilitate dispersion. One hundred grain size classes
between 0.3 and 300 μm were exported using a Malven Mastersizer
2000 analyzer.

Magnetic susceptibility (MS) was measured at 10–20 cm intervals
using a Bartington Instruments MS2 magnetic susceptibility meter,
and a total of 373-data points were produced.

Pollen was extracted from coastal sediments using the integrative
method of sieving and heavy liquid separation (Li and Du, 1999). A
total of ninety-nine samples were investigated at ~50 cm intervals
in the Center of Hydrogeology and Environmental Geology, China
Geology Survey. The pollen count per 100-gram bulk sample ranges
from 2 to 279, with an average value of 150.

To detect the potential relationship between the three proxies,
scatter plots were employed showing that there was no obvious
correlation between the three proxies (Fig. 3). However, because
the median grain size was related to the sedimentary changes
(CDIG, 1978), it is implied that the magnetic susceptibility and the
tree-pollen abundance are independent of the sedimentary variation
tary records to three astronomical rhythms and the Asian monsoon,
l. (2012), doi:10.1016/j.palaeo.2012.02.020
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Fig. 2. Stratigraphic columns, grain size spectrum, radiocarbon dates and OSL ages, foraminifera counts and the three proxies of the borehole Lz908. The depth of three transgressions
is marked as shadows. The foraminifera data is from Yao et al. (2010).
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indicating that these two series could be used as palaeoenvironmental
indicators.

3.2. Grain size indicator

Sediment grain size is a powerful proxy applied in various
paleoenvironmental studies. For instance, the grain size of loess–
paleosol sequences is regarded as a good index of East Asian Winter
Monsoon (EAWM) intensity: coarser grain size corresponds to
strengthened EAWM, and finer grain size corresponds to weakened
EAWM (e.g., An et al., 1990, 1991; Ding et al., 1994; Guo et al.,
1998; Liu and Ding, 1998; Porter and An, 1995; Sun et al., 2006,
2012). On the other hand, Sun (2004) stated that the grain size distri-
bution of the late Cenozoic aeolian deposition could be divided into
two groups-fine and coarse parts-which might relate the high-
altitude westerly stream and the low-altitude winds of monsoonal
circulation, respectively. For lacustrine sediments, the coarser grain
size might indicate moister periods: high discharge brings coarse
sediments into lake, the outflow discharge removes fine-grained
sediments, and the net effect of these two processes produces coarse
sediments (Campbell, 1998). In contrast, White (2002) argued that
increased grain size is caused by a warmer and drier climate in
which lake levels decrease and the inflowing drainage systems eroded
to a lower local base level. For coastal sediments, the coarse grains
could indicate the high-energy environment in offshore areas
controlled by coastal or tidal processes (e.g. Zhang et al., 2008b), or
high precipitation in onshore areas dominated by fluvial input (e.g.,
Boulay et al., 2007; Liu et al., 2005). Hence, because of the complicated
sedimentary dynamics, it is necessary to assess possible changes of
various processes involved in deposition. To achieve this, we
employed varimax-rotated Principle Component Analysis (V-PCA)
using the correlation matrix of grain size spectra for grain sizes ranging
from 0.3 to 300 μm as the input matrix. This method assumes that each
sedimentary process is related with a specific grain size spectral shape,
Please cite this article as: Yi, L., et al., Late Quaternary linkage of sedimen
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and thus allows us to separate out orthogonal modes (independent
grain size spectral components/shapes) indicating potential changes
of input functions (Darby et al., 2009; Weltje, 1997).

As an initial step, to test the underlying assumption, we performed
separate V-PCA analysis on the transgressive, regressive and surface
data sets, and then combined the surface and core data to analyze
their components in common. The loess grain size collected from
the Xifeng Profile on the Chinese Loess Plateau (Hao et al., 2008)
was also compared for reference. This allowed us to test the null
hypothesis that different processes control the sedimentation in
these data sets (Darby et al., 2009). The results show that all of the
surface, transgressive and regressive sediments have the same data
structure as seen in nearly identical component loading models, but
the loess samples was completely different (Fig. 4). This relation
was also observed from the comparison among various samples
with the same data structure (Fig. 5). Thus, it is inferred that the
factors dominating grain size variation during transgressive–regressive
alternations did not change obviously, but the relative importance
(percentage) of each component varied with time.

The sediments in the south Bohai Sea were deposited from several
local rivers, all of which originate from the Luzhong Mountain Range.
Because the sedimentary facies altered between delta, tidal flat and
inter-tide systems during a transgression and between delta, alluvial
and lagoon environments during a regression, the constant factor
controlling the grain size variation could only be the fluvial processes
and the four components extracted from V-PCA procedures may
correspond to the differences between these local rivers in water
discharge, sediment loads or topography. Additionally, there is a
slight difference in the clay component (finer than 4 μm) in
Fig. 5C, indicating that other processes only have a small influence
on component F4 of transgressive sediments. Considering the
environmental differences between transgression and regression,
these recessive factors might be correlated to coastal or source-
area settings.
tary records to three astronomical rhythms and the Asian monsoon,
l. (2012), doi:10.1016/j.palaeo.2012.02.020
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Fig. 3. Correlation between median grain size and magnetic susceptibility (A), median
grain size and tree-pollen abundance (B), magnetic susceptibility and tree-pollen
abundance (C).
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4. Absolute dating and initial timescale

4.1. Transgressions around the Bohai Sea

In the west Bohai Sea, Zhao et al. (1978) initially reported three
transgressions based on 71 coastal cores and their depth ranges
were 5.0–16.8 m (T-1), 27.5–43.9 m (T-2) and 56.2–79.9 m (T-3),
respectively. Most subsequent works around the marginal seas of
China (South China Sea, East China Sea, Yellow Sea and Bohai Sea)
Please cite this article as: Yi, L., et al., Late Quaternary linkage of sedimen
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stated comparable results in sedimentary characteristics (see the
reviews of Wang and Tian, 1999; Liu, 2009; Fig. 6). Wang and Tian
(1999) analyzed the neo-tectonic setting of the late Quaternary trans-
gression in the eastern coastal plain of China and reviewed the T-3
base in the west of the Bohai Sea. In the south Bohai Sea, Han et al.
(1994) reported the depths of T-1, T-2 and T-3 as 0–18.5 m with a
thickness of 5–10 m, 12–50 m with a thickness of 10–25 m, and
35–76 m with a thickness of 10–15 m, respectively. Zhang et al.
(1996) reviewed 17 cores and concluded the depths of T-1, T-2 and
T-3 are 2–27 m, 15–32 m and 30–48 m, respectively. Based upon
the fossil foraminifera assemblages of Lz908 core, Yao et al. (2010)
correlated the transgressive/regressive events with the Shouguang E
core (Zhao, 1995).

The age model for these transgressions could be summarized as
follows (Zhao et al., 1978; IOCAS, 1985; Liu, 2009, also see Fig. 6):
(1) constrained by radiocarbon dating, T-1 developed in the Holocene;
(2) constrained by the radiocarbon, TL/OSL and geomagnetic excursion
(Mungo Event, 35–40 ka, Barbetti andMcElhinny, 1976), T-2 developed
in MIS3; (3) constrained by the geomagnetic excursion (Black Event,
110–120 ka, Smith and Foster, 1969), T-3 developed in MIS5; and (4)
regressions occurred at the beginning of glacial stages, i.e. MIS2 and
MIS4. Based upon regional comparisons, this time framework was
employed in the marginal seas of China (Liu, 2009). Similarly, based
on the events correlated with the Shouguang E core (Zhao, 1995), Yao
et al. (2010) suggested the ages of T-1, T-2 and T-3 in the Lz908 core
were the Holocene, MIS3 and MIS5, respectively.

4.2. Absolute dating of Lz908 core

4.2.1. Radiocarbon dating
Four foraminifer samples from Lz908 were taken for radiocarbon

dating. All radiocarbon measurements were conducted at Woods
Hole Oceanographic Institution in the USA using the Accelerator
Mass Spectrometry method (AMS). The conventional ages were
converted to calendar ages using the Calib6.0 radiocarbon calibration
program (Stuiver and Reimer, 1993) with the Bohai Sea calibration
dataset (Wang and Fan, 2005; Wang et al., 2004). The dating results
are summarized in Table 1.

4.2.2. OSL dating
For the optically stimulated luminescence (OSL) dating, we chose

pure quartz of the fine fraction (4–11 μm) and followed the
sensitivity-corrected multiple aliquot regenerative-dose protocol
developed by Lu et al. (2007) to determine the equivalent dose. All
measurements were performed using a Daybreak 2200 automated
OSL reader in Qingdao Institute of Marine Geology, Chinese Geological
Survey. Following Aitken (1998) and Prescott and Hutton (1994), we
then measured neutron activation and cosmic ray contribution in the
dose rate determination, while taking into account influences from
water content and grain size. The dating results are summarized in
Table 2.

4.2.3. Dating results
For T-1, there is one radiocarbon date, i.e. 8.24±0.054 cal ka BP,

and two OSL ages, i.e. 2.1±0.2 ka and 9.7±0.8 ka (Figs. 2 and 7).
These three ages constrain T-1 to the Holocene, which is consistent
with previous studies (Wang and Fan, 2005; Wang et al., 2004).
Additionally, the age-depth relation also demonstrates that the ages
within errors are consistent between radiocarbon and OSL methods.

For the pre-Holocene samples, there are three radiocarbon dates,
i.e. 46.7±2.2, 42.5±1.2 and 44.0±1.5 cal ka BP, and seven OSL
ages from 22.9±2.0 ka to 99.5±9.8 ka. These radiocarbon dates
and OSL ages are stratigraphically consistent with depth (r=0.97,
pb0.01) constraining T-2 to MIS3-5 (Fig. 7). This result is somewhat
similar to those of Yim et al. (1990) and Chen et al. (2008) but different
tary records to three astronomical rhythms and the Asian monsoon,
l. (2012), doi:10.1016/j.palaeo.2012.02.020
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Fig. 4. V-PCA results from different types of samples. A (Transg-Sediment), transgressive samples; B (Regre-Sediment), regressive samples; C (Core-sediment), the whole samples
from Lz908 core; D (Surface-Sediment), surface samples (Chen et al., 2009; Du et al., 2008); E (Surface+core), combined surface samples and Lz908 core samples; and F (Loess-
Sample), loess sediments from Xifeng Profile (Hao et al., 2008). F1, F2, F3 and F4 represent the components of V-PCA procedures and their variances are displayed.
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from other studies (e.g. IOCAS, 1985; Lin et al., 2005; Wang and Tian,
1999; Zhang et al., 2008b; Zhao, 1995; Zhao et al., 1978).
4.2.4. MIS-3 Problem related to the transgression ages
Although the transgressions around the marginal seas of China are

comparable (Fig. 6, see the reviews of Wang and Tian, 1999; Liu,
2009), there are some debates about their ages with most attentions
paid to T-2. Three questions related to T-2 have not been answered
yet (see the review of Liu, 2009): (1) T-2 was buried at a depth of
15–40 m, while 14C ages range from 38 to 24 ka for the top of T-2,
and from 35 to 23 ka for the bottom. The age intervals overlap, and
which one should be trusted (Liu, 2009)? (2) Compared with the
borehole QC2 located in the south Yellow Sea and dated to 28.5 ka
by 14C at the beginning of T-2 (Fig. 6, Yang and Lin, 1991), why and
how did T-2 occur in the Bohai Sea (35–40 ka) earlier than in the
Yellow Sea (Liu, 2009)? (3) In the context of global sea level 60–
80 m lower in MIS 3 than the present (Chappell et al., 1996), why
and how did this transgression occur and have a greater influence
than T-3 (Fig. 1B)?

One possible explanation could be related to the chronologies,
which were estimated mainly by counting transgression strata and
measuring geomagnetic excursions (Liu, 2009). Based upon the
comparison between U-series and radiocarbon dates of borehole
sediments, Yim et al. (1990) stated that T-2 deposited in Hong Kong
should have formed in MIS 5 but not in MIS 3. Chen et al. (2008)
also argued that T-2 was constrained to MIS 5 based upon OSL dating.
According to radiocarbon and OSL dating results in the Lz908 core
sediments, T-2 was supposed to occur at the beginning of MIS 5
supporting the conclusions of Yim et al. (1990) and Chen et al. (2008).
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4.3. Hiatuses and preliminary timescale

4.3.1. Sedimentary hiatuses
Between alternations of transgression and regression, there could

be some hiatuses due to paleoenvironmental changes. Li et al. (2004)
suggested that there were five hiatuses in the three transgressions
based upon the sedimentation and age characteristics of six boreholes
in the west Bohai Sea (Table 3). However, it seems that the hiatuses in
the west Bohai Sea lasted less than 10 ka indicating no major hiatus
during the three alternations between transgression and regression.
In contrast, based upon OSL dating, Chen et al. (2008) argued that
the sedimentary process in Tianjin area was predominantly eroded
and that the transgressive sediments were deposited in a very short
period.

However, the south Bohai Sea is located between the branches of
the Yi-Shu Rift (Gao et al., 1980; Zhang et al., 2003) which are compo-
nents of the Tan-Lu Rift System. Continuous subsidence (Wu et al.,
2006; Yu et al., 2008) provides an appropriate condition for preserva-
tion of sedimentary strata. The sediments transported from the
Luzhong Mountain Range is carried by local rivers with steep stream
gradients (8–15 m/km), which drops suddenly where the rivers reach
the coastal plains, decreasing their gradient to 0.1–0.5 m/km as they
progress towards the south Bohai Sea. The gradient pattern of the
drainage system indicates that these local rivers have a large and
constant capacity to carry various grains from mountains to coastal
plains. Moreover, because of the short distance between sediment
source and deposition, when a regression occurred, the study area
have been replace by diluvial fan (Chen et al., 1991), loess/sandy
dunes (Chen et al., 1991; Yu et al., 1999; Zhao, 1991; 1995) or alluvial
fan (Meng et al., 1999). Thus, because of these geomorphologic and
tary records to three astronomical rhythms and the Asian monsoon,
l. (2012), doi:10.1016/j.palaeo.2012.02.020
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Fig. 5. V-PCA result comparisons within the same data structures. The abbreviations are same as in Fig. 4.
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Fig. 6. Regional comparison of the three transgressions around the Bohai Sea and the Yellow Sea. 1, Bc-1 (IOCAS, 1985); 3, CQJ-4 (Shi et al., 2009); 4, BZ-1 (Chen et al., 2008); 5, P-8 (Gao et al., 1986); 6, BQ-1 (Yan et al., 2006); 7, S-3 (Zhuang
et al., 1999); 8, E (Zhao, 1995); 9, Lz908 (this study); 12, Qc-2 (Yang and Lin, 1991); 2 (B-5), 10 (L-2), 11 (GK-5), 13 (Qc-5) and 14 (HD) are modified fromWang and Tian (1999). The average grain size of E core (Zhao, 1995) and Lz908 core
(this study) are also displayed for comparison. The ages of three transgressions were constrained to b10 ka, b40 ka and 75–128 ka, respectively (Wang and Tian, 1999), and five different reports are labeled ①–⑧. See details in text.
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Table 1
Radiocarbon dates on materials from the borehole Lz908.

Samples ID Lab. No. Depth (m) Dating type F Modern Date Date* Date interval** d13C Δ14C

(14C yr BP) (cal ka BP) (cal ka BP)

LZ908-1(14C), OS-83158 10.10–10.20 Mixed Foraminifera 0.3854±0.0016 7660±35 8.240±0.054 8.132–8.348 −7.33 −617.30
LZ908-2(14C), OS-83159 14.00–14.10 Mixed Foraminifera 0.0045±0.0016 43400±2900 46.7±2.2 42.3–51.1 −3.35 −995.52
LZ908-3(14C), OS-83160 15.10–15.20 Mixed Foraminifera 0.0087±0.0016 38200±1500 42.5±1.2 40.1–44.9 −3.31 −991.41
LZ908-4(14C) OS-83179 18.10–18.20 Mixed Foraminifera 0.0065±0.0016 40400±2000 44.0±1.5 41.0–47.0 −3.42 −993.53

Note: *The conventional dates were converted to a calibrated age using the Calib6.0 radiocarbon calibration program (Stuiver and Reimer, 1993) with the Bohai Sea calibration
dataset (Wang and Fan, 2005; Wang et al., 2004). **Confident intervals of radiocarbon date at 95.4% confident level.
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topographic features, there was no large sedimentary hiatus evident
in the south Bohai Sea (Han et al., 1994; Lin et al., 2005; Liu et al.,
2009; Zhao, 1995). Moreover, the grain size spectra of Lz908 core
exhibits no abrupt changes and the sediments are compositionally
homogeneous downcore (Fig. 2), and the radiocarbon dates and OSL
ages, within errors, are generally stratigraphically consistent with
depth (Fig. 7). Thus, it seems unlikely that there are any major
hiatuses in the Lz908 core.

4.3.2. Preliminary timescale and sediment accumulation rate
Considering the homogeneous sediments and the correlation

between the radiocarbon and OSL dating results and their depth,
we infer there were no major sedimentary hiatuses in the upper
54 m of Lz908 core and chose linear interpolation and extrapola-
tion strategies to construct a preliminary timescale for the core
(Fig. 7).

The age-depth model indicates that the late Quaternary sediments
in borehole Lz908 in are 54.0 m thick, which constrains the timing of
T-1, T-2 and T-3 to the Holocene, MIS3-5, and MIS7, respectively.
Sedimentation could be divided into two rates (Fig. 7): (1) a very
high rate of 107 cm/ka in the Holocene and (2) a moderately high
rate of 17 cm/ka in the pre-Holocene. The sedimentation rate in bore-
hole Lz908 indicates that the sampling interval of 2 cm provides an
averaging temporal resolution of ~18 a in the Holocene and ~117 a
in the pre-Holocene. Estimates of the thickness of the Holocene
sediments around the Bohai Sea range from 9 to 15 m (Wang and
Fan, 2005; Wang et al., 2004), consistent with the value of ~11 m
that we estimated for Lz908 core.

5. Astronomical timescale

5.1. Grain size variation vs. Asian monsoon

5.1.1. Proxy indicator
Because the river is the unchangeable factor in paleoenvironmental

evolution, to include all the variations related to fluvial changes, we
Table 2
Optically stimulated luminescence dating results of the borehole Lz908.

Sample Depth U (ppm) Th (ppm) K (%) Water conte

D15 3.0 m 1.39±0.015 6.30±0.02 1.536 10.5±5%
D20 10.7 m 2.91±0.015 9.09±0.02 1.784 13.5±5%
D28 15.4 m 1.11±0.015 5.00±0.02 1.872 10.8±5%
D29 16.1 m 1.08±0.015 5.01±0.02 1.784 13.8±5%
D32 19.7 m 1.32±0.015 7.18±0.02 1.736 10.9±5%
D33 21.6 m 1.47±0.015 7.49±0.02 1.792 11.7±5%
D34 22.2 m 1.51±0.015 7.55±0.02 1.536 13.6±5%
D37 25.3 m 1.96±0.015 9.30±0.02 1.824 13.6±5%
D38 25.5 m 1.51±0.015 7.32±0.02 1.672 15.2±5%

Note: *The age included one standard deviation of the OSL measurements. **Confident inte
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combined four components developed from V-PCA procedures of
surface+core samples into a new series of grain size (GS):

GS ¼ 55:1� Factor1þ 17:3� Factor2þ 12:2� Factor3þ 12:2
� Factor4

According to data structure and correlation with each grain size
class (Fig. 4E), this integrated series, GS, combined the variations
positively from fine grains and negatively from coarse grains.

5.1.2. Interpretation of the GS series
Sediment transport can alter grain size vertically within the

seabed and horizontally across the continental shelf (Wheatcroft et
al., 2007): as bed shear stresses initially increase during a re-
suspension event, fine sediment is re-suspended from the surface
layer of the bed, leaving the coarsest sediment as a lag or armouring
layer on the bed. When flow conditions wane, coarse material in
suspension will settle out first, owing to its higher settling velocity
and the fact that it is carried close to the seafloor, resulting
re-deposited sediments will fine upward (Leithold, 1989; Nittrouer
and Sternberg, 1981; Wheatcroft et al., 2007). Hydrological experi-
ments demonstrate that grains in the 40–90 μm size range can be
suspended under a flow velocity of as low as 18.57 cm/s (Chen, 1982).
Because velocities of 30–40 cm/s are common in the study area (Chen
et al., 2009; Du et al., 2008), many of the sediments deposited at our
location will consist of winnowed materials re-suspended from the
surrounding near-shore flats (Chen et al., 2009; Du et al., 2008).
Additionally, thematerials of the core sediments have been transported
in the form of graded and uniform suspension (Yi, 2010). Thus, it is
inferred that the GS series is related to the re-suspension intensity:
when the flow velocity increases, the re-suspension strengthens caus-
ing that the sediment contains less coarse grains butmore fine fractions,
and the GS consequently increases.

Water discharge and stream gradients are two factors influencing
flow velocity. The stream gradient of rivers is 0.1–0.5 m/km towards
the sea and the average slope of the near-shore flat is ~0.02% with a
nt Dr (Gy/ka) De (Gy) Age (ka)* Age interval (ka)**

2.43±0.18 5.08±0.17 2.1±0.2 1.7–2.5
3.12±0.23 30.24±1.16 9.7±0.8 8.1–11.3
2.44±0.19 55.77±2.48 22.9±2.0 18.9–26.9
2.26±0.17 106.98±6.56 47.4±4.7 38.0–56.8
2.55±0.19 178.15±11.32 69.8±6.9 56.0–83.6
2.64±0.20 164.72±29.44 62.4±12.1 38.2–86.6
2.37±0.18 174.43±8.49 73.7±6.6 60.5–86.9
2.88±0.21 286.52±18.22 99.5±9.8 79.9–119.1
2.41±0.18 218.49±12.55 90.8±8.6 73.6–108.0

rvals of radiocarbon date at 95.4% confident level.
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Fig. 7. Timescale comparison between the chronologies based upon absolute dating and astronomical tuning. The sedimentation rate changes (grey-shadow area) and the possible
three hiatuses (labeled A, B and C) according to the astronomical chronology are also displayed. See details in text.
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width of 10–15 km. During a regression, though the rivers could
extend further into the Laizhou Bay where the water depth is less
than 15 m (IOCAS, 1985), the stream gradient or the average slope
would not change substantially, implying that the dominant factor
of flow velocity is not stream gradient, but water discharge: when
the water discharge increases, the flow velocity would enlarge and
the re-suspension strengthen.

An empirical relationship between water discharge (QR, m3/s) and
regional precipitation (r, mm/a) can be expressed as follows (Kjerfve,
1990):

QR ¼ ∫∫r � e−
E0
r dA

where dA is each drainage basin (km2), and E0 is a potential evapo-
transpiration (mm/a). The equation indicates that water discharge is
linked to regional precipitation in a strong and positive relation:
when the regional precipitation increases, the water discharge rises.
Furthermore, a positively linear association between water discharge
and sediment loads is also reported from the western slopes of the
Columbian Andes (Restrepo and Kjerfve, 2000), the five ephemeral
streams in Wyoming in the USA (Rankl, 2004) and the Pearl River
in China (Zhang et al., 2007).

The local drainage system at our location includes mainly the
Xiaoqinghe River, Mihe River and Weihe River. The association
(Fig. 8) of water discharge with the amount of suspended materials
of these local rivers is r=0.82 (pb0.01), and with regional precipita-
tion is r=0.91 (pb0.01).

Given that the regional precipitation is predominantly controlled
by the Asian monsoon, we infer that the GS series is essentially an
indicator of Asian monsoon intensity: when the Asian monsoon
strengthens, regional precipitation increases, the water discharge of
local rivers increases, the amount of re-suspended materials ascends,
and the GS values enlarge.

5.2. Astronomical timescale based on the GS series

Because the Asian monsoon is dominated by orbital changes (An
et al., 1990; Cheng et al., 2009; Guo et al., 1998; Liu and Ding, 1993;
Liu and Ding, 1998; Porter and An, 1995; Sun et al., 2006, 2012;
Table 3
Hiatuses reported in the west Bohai Sea, China.(1).

No. Depth Position

Hiatus-1 10 m Middle of T-1
Hiatus-2 16 m Beginning of
Hiatus-3 25 m End of T-2
Hiatus-4 (2) 41 m Beginning of T
Hiatus-5 80 m Beginning of

Note: (1) This table was re-plotted from Li et al. (2004) based on six boreholes drilled in th
(3) These hiatuses were only observed in the cores located in the coastal plain of west Boh
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Wang et al., 2001, 2005, 2008) and because the GS series indicates
the variability of Asian monsoon intensity, which responds to solar
insolation (Cheng et al., 2009;Wang et al., 2001, 2008) at precessional
periodicities (Fig. 9), it is possible to refine the preliminary timescale
using the orbital tuning. This approach has been widely used to con-
struct age models for deep sea sediments (Ao et al., 2011; Hüsing et
al., 2010; Lisiecki and Raymo, 2005; Ruddiman et al., 1989; Tian et
al., 2008), Chinese loess (Ding et al., 1994; Lu et al., 1999; Sun et al.,
2006), and other continental deposits (An et al., 2011; Aziz et al.,
2003; van Vugt et al., 1998).

5.2.1. Tuning target curve
For the construction of an astronomical timescale, the selection of

suitable target curves is crucial. In this study, we selected the 65 N
summer insolation (Berger and Loutre, 1991) for the tuning of
Lz908 core, because it is a major forcing factor for Asian monsoon
on the orbital timescales (An et al., 2001; Cheng et al., 2009; Guo et
al., 2002; Wang et al., 2001, 2005, 2008). Additionally, the solar
radiation estimated at latitude 65 N was the original forcing function
and has long been regarded as a typical indication for Northern
Hemisphere radiation conditions (e.g. Berger and Loutre, 1991;
Imbrie et al., 1984; Paillard, 1998).

As proposed by Ruddiman (2006), the Asian monsoon should
respond to the Northern Hemisphere summer insolation with a
near-zero phase lag, and this is supported from the phase relationship
between the Chinese stalagmite δ18O series and solar insolation over
the past ~400 ka (Cheng et al., 2009; Wang et al., 2008). Thus, we
assumed no phase difference existed between the solar insolation
curves and the monsoon climate response throughout the last 260 ka.

5.2.2. Orbital tuning
First, the GS series and the 65 N latitude summer solar insolation

time series (Berger and Loutre, 1991) were visually matched
(Fig. 9). Then the GS time series was filtered using a band-pass filter
centered on the precession frequency (19–23 ka), and the resulting
curves were correlated with the unfiltered solar insolation time
series. Additional age control points were added iteratively until the
unfiltered GS time series and the solar radiation time series showed
a good match, as confirmed by cross spectral coherence (Fig. 9). We
used a cubic spline interpolation technique on the additional age
Lasting Number of cores

1 ka 6
T-1 8 ka 6

3 ka 2 (3)

-2 – 1 (3)

T-3 - 1 (3)

e west Bohai Sea, China. (2) Hiatus-4 represents a period with low sedimentation rate.
ai Sea, China.

tary records to three astronomical rhythms and the Asian monsoon,
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Fig. 8. A, the relationship between sediment loads and water discharge of the
Xiaoqinghe River, Mihe River andWeihe River (data from SDSTC, 1990). B, the relationship
betweenwater discharge andcatchments precipitation of theXiaoqingheRiver,Mihe River
andWeihe River (data from Cao et al., 1998).
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points to improve covariance of the GS and the insolation time series
(Ding et al., 1994; Lu et al., 1999). When tuning the time scale for the
GS series, we also referred to the Asian monsoon intensity integrated
from the stalagmite δ18O series in Hulu Cave and Sanbao Cave (Cheng
et al., 2009; Wang et al., 2001, 2008) to assist in matching the short
climatic variations.

5.2.3. Testing the new timescale and refined rate of sediment accumulation
In order to test the coherency between our GS on the new

chronology and the insolation time series, spectral analyses were
conducted (Fig. 9). Results indicate that during the period 2–260 ka,
on the precessional periodicities, i.e. 19–23 ka, the coherency is
significant and over the 5% significance level. The correlation coefficient
between the insolation time series and the filtered GS variation at the
precession band (19–23 ka) was also improved from r=0.43 to
r=0.90 through the orbital tuning processes.

The sedimentation rate derived from the tuned age model is similar
to that derived from the initial age model (Fig. 7). The sedimentation
rate in the Holocene was 1.35 m/ka which is slightly higher than that
from the initial age model, and in the pre-Holocene averaged 0.17 m/
ka ranging between 0.02 and 0.37 m/ka. Low sedimentation rates
(0.02–0.05 m/ka) were observed at depths of 16.6 m (34 ka), 28.2 m
(100 ka) and 35 m (145 ka), which correspond to the end of T-2, begin-
ning of T-2 and during the regression 2 (Fig. 7). The changing pattern of
sediment accumulation rate was somewhat similar to that of Li et al.
(2004) for the west Bohai Sea, China, indicating low sedimentation
rates during only a few intervals in the past 260 ka. Furthermore,
Please cite this article as: Yi, L., et al., Late Quaternary linkage of sedimen
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these periods were millennial but not orbital, and their existence
would not essentially affect the reliability of the astronomically tuned
timescale.

6. Results

The most noticeable feature of these coastal sediment variations is
the little similarity in pattern between the three proxies (Figs. 2, 3,
10), i.e. GS, MS series and tree-pollen abundance, but greater similar-
ity between GS and the Chinese stalagmite δ18O series (Cheng et al.,
2009; Wang et al., 2001, 2008) and July insolation at 65 N (precession
cycles, determining the season when the Earth is closest to the Sun;
Berger and Loutre, 1991), between MS and obliquity changes (tilt of
rotational axis, determining the meridional gradient in insolation),
and between tree-pollen abundance and deep sea sediment δ18O
records (Lisiecki and Raymo, 2005) and eccentricity change (determin-
ing the semi-annual difference in distance to the sun), respectively
(Fig. 10). Little internal similarity between records compared with
high similarity with external records indicates that the coastal sedi-
ments in the south Bohai Sea integrate different influences from various
environmental factors.

(1) For the GS series, it indicates Asian monsoon intensity. When
the Asian monsoon strengthens, regional precipitation
increases, the water discharge of local rivers increases, the
amount of re-suspended materials increases, and the GS values
rise; but when the Asian monsoon weakened, the GS values
decrease.

(2) For the MS series, it seems that this proxy was regulated by
orbital tilt with a phase lag of 8–12 ka relative to obliquity mini-
ma. During the periods of low obliquity, the coastal sediments
displayed lowmagnetic susceptibility values, but under contrary
conditions, the MS values were high.

(3) For vegetation cover, although it was difficult to determine the
exact phase lag of vegetation to global ice volume because of its
low resolution, tree-pollen abundance seems, apparently, to be
driven by global ice volume. When the global ice extended, the
annual temperature was low, the EAWM strengthened and the
regional arboreal vegetation coverage was limited; and when
the global ice volume declined, the annual temperature
became high, the EAWM weakened and the regional arboreal
vegetation expanded.

MTM spectral analysis (Dettinger et al., 1995; Ghil et al., 2002)
confirms these orbital relationships in dominance (Fig. 11): 19–23-ka
periodicity shows the highest power in GS, 41-ka period in the MS
series, and the 100-ka periodicity in the tree-pollen component.

7. Discussions

7.1. Driving force of the Asian monsoon

Based upon the GS variability and its spectrum (Figs. 9, 10, 11),
we inferred that the Asian monsoon variability recorded in the
Bohai Sea was dominated by solar insolation rather than ice volume
changes: when the solar insolation was high, the ITCZ moved north-
ward resulting in more moisture transported to the Asian inland
area. This is consistent with many low-latitude studies (e.g. Ao et
al., 2011; Cheng et al., 2009; Wang et al., 2001, 2005, 2008). How-
ever, the complexity arises in that the ~100-ka cycles were also
observed in the GS spectrum (Fig. 11A) indicating some possible
influence from the global ice volume changes. These ~100-ka cycles
were also broadly reported in inland-related records (e.g. Liu,
1985; Kukla, 1987; An et al., 1990, 2001, 2011; Liu and Ding, 1993;
Ding et al., 1995; Liu et al., 1999; Wang et al., 1999; Wehausen and
Brumsack, 2002; Sun et al., 2006, 2012). Thus, as suggested by
Wang (2009), we propose that the Asian monsoon variability
tary records to three astronomical rhythms and the Asian monsoon,
l. (2012), doi:10.1016/j.palaeo.2012.02.020
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Fig. 9. Testing the astronomical tuning chronology of Lz908 core. A, F and I (red thin lines), are the July solar insolation at 65 N (Berger and Loutre, 1991). B and G (blue bold lines)
are the GS variability at 19–23 ka band. C and H are the original (grey dash lines) and low-frequency variation (>10 ka, FFT filter, bold lines) of GS series. D and J are the continuous
wavelet power spectrum (CWPS, Grinsted et al., 2004) of the filtered variation of the GS series (FFT filter, fb0.1). The thick black contour designates the 5% significance level against
red noise and the cone of influence (COI) where edge effects might distort the picture is shown as a lighter shade. E and K are the squared wavelet coherence (WTC, Grinsted et al.,
2004) between the filtered GS variation (this study) and the July solar insolation at 65 N (Berger and Loutre, 1991). The 5% significance level against red noise is shown as a thick
contour. All significant sections show in-phase behavior (with in-phase pointing right, anti-phase pointing left). All the plots in the left panel represent the results based on the
initial timescale, and the plots in the right panel represent the results from orbital tuning. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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recorded in the Bohai Sea demonstrates the interaction between
the internal (global ice volume) and external (solar insolation)
factors, but the external factor (solar insolation) was the predominant
one.

7.2. Magnetic susceptibility vs. obliquity changes

The MS value is determined by the amount of magnetic grains
carried from the sediment source and the pedogenetic intensity
after settlement. Mineral investigation under the microscope shows
that there are only two kinds of magnetic minerals present: the
major is ilmenite and the minor is limonite (Yi, 2010). As the Luzhong
Mountain Range is renowned for the production of ilmenite, it is
inferred that the pedogenetic intensity was weak and the source of
magnetic mineral was the controlling factor in the MS variation.

The local rivers to the south Bohai Sea carried the magnetic grains,
and these grains were a result of river incision around the sediment's
source. A classical model of fluvial sedimentation in response to
climate change is described as follows (Vandenberghe, 1995, 2003):
during the glacial stages, due to the catchment's erosion enhanced
by limited vegetation, the sediment supply to the rivers increases,
while higher temperature and more humid interglacials result in
denser vegetation and a reduction in sediment supply; and an incision
takes place at the climate transitions, when the river system becomes
Please cite this article as: Yi, L., et al., Late Quaternary linkage of sedimen
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unstable. We described the link here, between MS and climate
changes, as a result of enhanced incision during the climate transitions
providing more magnetic grains into the rivers flowing into the south
Bohai Sea.

A statistical test of the ice terminations suggested that the orbital
tilt paced the deglaciations, and, since the mid-Pleistocene, the
climate state has skipped one or two obliquity beats, thus giving
glacial-cycle durations of ~100 ka (Huybers and Wunsch, 2005).
Because at the beginning of glaciations the basal temperature was
low (Marshall and Clark, 2002), the obliquity pacing had little effect
on the ice melting (Huybers and Wunsch, 2005), but when the ice
sheets became thick, the increased obliquity caused increasing high-
latitude insolation and ice sheet melting (Huybers and Wunsch, 2005)
coupled with high basal temperature and pressure (Marshall and
Clark, 2002). Because a lag of ~10 ka is required for surface heating to
ice sheets (Marshall and Clark, 2002), the observed 8–12 ka lags of MS
to the obliquity pacing could be a response to this heat transfer process.

The condition in the south Bohai Sea would be somewhat different,
because it is located on marginal areas of the Arctic and Siberian ice
sheets. While the question of whether glaciations occurred during
the late Quaternary in the eastern China (e.g. Kusky et al., 2011; Lee,
1933,1934, 1936; Li et al., 2008; Lü et al., 2010; Zhao, 2010) or
did not (e.g. Shi et al., 1987; Shi, 2000, 2010; Zhou, 2006), is still
hotly debated, the study area did experience an extremely cold
tary records to three astronomical rhythms and the Asian monsoon,
l. (2012), doi:10.1016/j.palaeo.2012.02.020
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Fig. 10. Tree-pollen abundance (A), MS series (D) and GS series (F) are three proxies developed in this research (thin lines are plotted from original data and bold lines from FFT
filtered data at fb0.1). Eccentricity (B), orbital tilt with 8-ka lead (E) and July insolation at 65°N (G) — the orbital changes involved in the comparison (Berger and Loutre, 1991).
(C) Deep sea sediment δ18O records (LR04 stack, Lisiecki and Raymo, 2005). Marine isotopic stages labeled. (H) Stalagmite δ18O series integrated from Hulu Cave and Sanbao Cave
(Cheng et al., 2009; Wang et al., 2001, 2008). All series plotted here were interpolated at 1-ka temporal interval. See details in text.
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environment in that wooly rhinoceros andmammoth fossils from this
time period have been found around the Bohai Sea (IOCAS, 1985).
Because the latitude of the Bohai Sea is lower than the Arctic and
Siberian ice sheets and closer to the Pacific Ocean, it seems that the
heat and moisture transported from the low-latitude ocean could
have more efficiently reached the study area. Thus, we speculate
that in study area obliquity pacing may be more sensitive to heat
and moisture transferred from the proximal ocean: during periods
with greater obliquity, the enhanced meridional insolation gradient
would enhance heat and moisture transport from low- to high-
latitude than during the period with less obliquity. In this process,
the obliquity heating could liberate the study area from an extremely
cold environment and potentially increase climatic variation. The
climate transition has caused strengthening of incision processing,
allowing more magnetic materials to flow to the south Bohai Sea.
Thus, we employed this mechanism to explain the relationship
between the MS series and the obliquity pacing.

7.3. Vegetation coverage vs. global ice volume

The vegetation coverage indicated from the tree-pollen abun-
dance could be controlled by the vegetation distribution in a glacial
stage when the continental shelves were exposed or the regional
humidity changes (Sun et al., 2003). To identify the dominant factor,
the principle of limiting factors, which states that tree growth is limited
by various environmental factors, would be helpful. The principle of
limiting factors was proposed that (Fritts, 1976): (1) in arid areas, tree
growth can not proceed faster than that allowed by the amount of
precipitation, causing tree volume to be a function of precipitation;
(2) at higher latitudes and elevations, temperature is often the most
limiting factor; and (3) for many forest trees, especially those growing
in temperate and/or closed canopy conditions, the most limited factors
are the processes related to stand dynamics (especially competition for
nutrients and light) rather than climatic changes.
Please cite this article as: Yi, L., et al., Late Quaternary linkage of sedimen
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The tree-pollen in the south Bohai Sea mainly comes from the
Luzhong Mountain Range (Zhang et al., 2008b), which is presently a
semi-humid or humid area. However, during a glacial stage, the
exposed Bohai Basin might have been covered by part of diluvia fan
(Chen et al., 1991), loess/sandy dune (Chen et al., 1991; Yu et al.,
1999; Zhao, 1991, 1995) or alluvial fan (Meng et al., 1999), lacking
forest. Thus, it is inferred that both the hydrological conditions and
the vegetation distribution changes were not the limited factors.

Temperature has been shown to be an important factor in tree
growth and forest ecosystem dynamics (e.g. Briffa et al., 2001; Buckley
et al., 1997; Jacoby and D'Arrigo, 1989; Kullman, 2001; Villalba, 1994).
Biological study of tree-ring radial growth on the northern range
margin of the United States showed that winter temperature could
most limit growth at the ecosystem level (Pederson et al., 2004),
supporting the hypothesis that winter temperatures may control vege-
tation ecotones. The reconstructed mean temperature of both warmest
and coldest months, which were extracted from lacustrine sediment
pollen data in Lake Biwa, Japan, showed great consistency with global
ice volume (Nakagawa et al., 2008). Moreover, Liu et al. (2010) also
reported in the Luzhong Mountain Range the predominant influence
of annual minimum temperature on tree growth. This implies that
temperature has a predominant effect on regional vegetation change.

The global temperature has changed with global ice volume in a
dominant periodicity of ~100 ka during the past ~800 ka (e.g.
Lisiecki and Raymo, 2005). The tree-pollen abundance approximately
matches the evolution patterns of global temperatures, indicating
consistency between regional and global changes and demonstrating
fidelity of the orbital tuning process.

7.4. Complex linkages to astronomical forcing

However, complexity is inherent in paleoenvironmental changes
and its driving processing. Although the three paleoenvironmental
proxies developed here relate to different controlling processes
tary records to three astronomical rhythms and the Asian monsoon,
l. (2012), doi:10.1016/j.palaeo.2012.02.020
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Fig. 11. Themulti-tapermethod (MTM) of spectral analysis (Dettinger et al., 1995; Ghil et al., 2002) for the GS (A), MS (B) and tree-pollen abundance (C). The significant periodicities
are labeled.
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operating at distinct periodicities, all the three variations on orbital
timescales exhibit the influence of a predominant astronomical
periodicity and one or more recessive periodicities (Fig. 12). For
example, in the spectral analysis (Fig. 11), recessive components of
100-ka cycles existed in the GS series, of precessional cycles in the
MS series and of 50–60-ka cycles (obliquity cycles, Berger and
Loutre, 1991) in the tree-pollen abundance.

(1) The GS variation was dominated by precessional cycles with a
slight 100-ka component indicating a combination between
solar insolation and global ice volume changes. The linkage from
the global ice volume changes to GS variability was probably, as
previous mentioned, related to: (a) the global sea levels that
decreased the distance between continent and ocean reducing
the heat and moisture transported inland (Wang, 1999); (b) the
Fig. 12. Complex linkages between sedimentary records in the south Bohai Sea, C
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decreased sea surface temperature likely reduced the evaporation
and the transportedmoisture (Guo et al., 2002, 2004); and (c) the
strengthened Siberian–Mongolian Highs increased the winter
monsoon and reduced the heat and moisture carried from the
ocean (Ding et al., 1994).

(2) TheMS variation, associated with river incision in the sediment
source area, responded to the obliquity pacing, because the
magnetic materials eroded from the Luzhong Mountain Range
were carried by local rivers to the south Bohai Sea. Because the
water discharge was related to the Asian Monsoon variability,
during the sediment transport, the precessional cycles are likely
to have been transferred into the MS series and expressed as
precessional cycles in the MS spectrum. Additionally, if there
were frequent large floods in some periods as suggested by Shi
and Deng (1982) and Shi (2010), river incision would also have
hina and Asian monsoon and three astronomical rhythms. See details in text.

tary records to three astronomical rhythms and the Asian monsoon,
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been enhanced and the 41-ka cycles disturbed.We assumed that
these processes might have transferred the precessional cycles
into the MS variation.

(3) The temperature condition was not only related to global ice
volume but also climatic changes in the source area. Because
climatic transitions in the Luzhong Mountain Range occur
nearly every obliquity pacing, these accelerated climatic transi-
tions possibly affected the vegetation recovery process.
Because the 50–60 ka cycles are components of obliquity
changes (Berger and Loutre, 1991), the obliquity cycles might
be transferred into the tree-pollen abundance variation.

(4) During the last glacial stage, the three proxies waxed and
waned with less amplification than during MIS 7–6 (Fig. 10),
probably indicating the eccentricity cycles have over-ridden
the influences of precession and orbital tilt. Even though
eccentricity has little direct impact on insolation, it has a
large indirect impact on climate through its modulation of
orbital precession (Ruddiman, 2006). When the amplitude of
orbital forcing falls below a threshold level, the eccentricity
cycle would dominate Asian monsoon intensity (Nakagawa et
al., 2008). However, the last glacial stage is a period of eccen-
tricity minimum during the last 260 ka (Fig. 10). During this
period, global ice volume extended over an extremely large
level, the very low global sea levels caused exposure of the
mainly continental shelf of the west Pacific (Liu, 2009), and
the Asian continent became nearly twice as remote from
maritime influences (Nakagawa et al., 2008). Thus, all the con-
trolling effect of precession and obliquity pacing weakened,
and three proxies were expressed in 100-ka cycles.

Therefore, neither external nor internal factors could dominate the
paleoenvironmental evolution on orbital timescales in a separated
way, and they are both integrated in a complex pattern (Fig. 12).
Every dominant or recessive factor, even with small changes, could
possibly have fingerprints in the paleoenvironmental evolution and
imprinted their periodicities significantly on the proxies, demonstrating
the nonlinear processes and the complex inherence.

8. Conclusions

To study the late Quaternary coastal evolution in the south Bohai Sea,
a new borehole, Lz908, was drilled. Three proxies, i.e. grain size, mag-
netic susceptibility and tree-pollen abundance, were investigated to
construct regional environment changes. The most noticeable feature
was that the three proxies had various dominant factors, including
Asian monsoon intensity, obliquity pacing and global ice volume.

The linkages of these proxies to the dominant forcing factors are
proposed, and the main conclusions are: (1) grain size variability is
an indicator of the Asian monsoon intensity, which is dominated by
both solar insolation (major) and global ice volume (minor) forcing;
(2) the magnetic susceptibility variation was sensitive to orbital tilt
through river incision processes coupled to solar insolation; (3) the
vegetation coverage responded to temperature variation which is
subjected to global ice volume with influence from obliquity changes;
(4) While all proxies exhibited a predominant periodicity, the presence
of minor periodicities arising from other orbital periods has indicated
the complexity of the natural system. These linkages confirmed that
the sedimentary records in the south Bohai Sea, China, record the non-
linear processes and the complex inherence in paleoenvironmental
evolution and driving processing.
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