Chapter 11

Linear Regression & Correlation

Introduction

*
variables:

-
dependent: variable of interest

-
independent: affects the dependent

*
simplest type of model:

-
one dependent variable (y)

-
one independent variable (x)

-
basic equation: y = o + 1x

Where: o = y-intercept

 1 = slope of a straight line 

-
deterministic model

*
scatter diagram

-
basic equation: y = o + 1x + 
where:  = random error

 = measure y – yhat on the straight line

-
one assumption is that the average value of  for a given value of x is zero.

-
since o & 1 are constants, the average value of y (or Expected Value of y) for a fixed value of x is: E(y) = o + 1x

Linear Regression and the Method of Least Squares

*
consider the problem of obtaining estimates for parameters in y = o + 1x +  for the linear regression: E(y) = o + 1x

*
an estimate for E(y): y = ohat + 1hat(x)

*
two techniques:

-
eyeball fitting

-
method of least squares

<         residual or error of prediction: y-yhat, the difference between the actual value of y and what it was predicted to be

<
chooses the prediction line yhat = ohat + 1hat(x) that minimizes the sum of the squared errors of the prediction (y-yhat)2 for all sample points.

<
consists of finding the estimates for o & 1 that minimize (y-yhat)2 

<
the estimates that minimize are:

1hat = (Sxy/Sxx)

ohat = ybar -1hat (x1bar)

where:

Sxx = x2 -[(x2)/n]

Sxy = xy -[(x)(y)/n]

-
the total variability in the y-values can be written as:

(y-ybar)2 
  = (yhat-ybar)2     + 
(y-yhat)2
total variability 
variable 

unexplained 


in y-values 
   explained by model 
variability

  SST =   

SSR 

+ 
     SEE

Transformations to Linearize Data

*
Pearson Correlation Coeff.

-
displays the strength of the relationship between x and various transformations on the dependent variable y

-
order of processing from curvature upward (y2 and y3) to curvature downward (Vy, log y, -1 /y, and -1 /y2)

*
the order for transformation on x is the same

*
Graph Examples -both the population (p) & sample (r)

Coefficients Correlation and Determination

*
Coefficient of Determination

-
a measure of the useful of a simple regression model

-
the proportion of the total variation in the n observed values of the dependent variables

r2 = SSR/SST = l-[SSE/SST]

*
Coefficient of Correlation

-
one measure of the strength of the relation between two variables x & y is the correlation coefficient:

r = Sxy/ V(Sxx)(Syy) = Vr2
where: Syy = y2 -(y)2/n

*
previously, we found that 1hat = (Sxy/Sxx)

therefore, r = 1hat [V (Sxx)(Syy)]

*
properties of r include:

-
r  Iies between -1 & + 1

-
r >0 positive linear relationship

· r <0 negative linear relationship 

· r = 0 no linear relationship

*
total variability of the y-values about their mean ybar

(y-ybar)2 = (y-yhat)2 + (yhat-ybar)2

*
total sum of squares: Syy = (y-ybar)2 = y2 - [(y)2/n]

*
total sum of squares for error:

(y-yhat)2 =Syy -(Sxy2/Sxx)

*
total sum of squares due to regression:

 (yhat-ybar)2 = Sxy2/Sxx
*
1-r2 = 1- Sxy2/( Sxx)(Syy) = (y-yhat)2 /Syy
-
represents the proportion of the total variability of the y-values that is not accounted for by the independent variable x

*
r2 = Sxy2/( Sxx)(Syy) =  (yhat-ybar)2 /Syy
-
represents the proportion of the total variability of the y-values that is accounted for by the independent variable x

*
rank order correlation coefficient (Spearman's rank order correlation coefficient): rs
-
rank all x-values and all y-values separately, and then calculate the correlation coefficient for each: rank low = 1 and high = n

-
rs = 1-6( di)/n(n2-1 )

where:

di = the difference between the y-rank and the x-rank on observation i

n = the number of xi, yj observations

<
this simpler formula is good if there are no ties in ranks for either of the two variables

Inferences Related to Linear Regression and Correlation

Introduction

*
linear regression model:

yi = y = o + 1xi + i i=1,2, ,n

*
least squares estimates:

1hat=Sxy / Sxx 
ohat=ybar-1hat(xbar)

Inferences About 1 and o
*
two assumptions:

1.
 A II ’s are independent of each other .

2. 
 for a given setting of the dependent variable x

is normally distributed with mean 0 and variance 2 and the variance 2 is constant for all settings of x

*
both 1 and o have sampling distributions that are normal with means (expected values) and standard errors:
ohat = o 


1hat = 1
ohat=V { X2 / nSxx} 
1hat =I V Sxx
*
an estimate of 2  in linear regression can be obtained by dividing SEE by n-2 degrees of freedom and is denoted by S2:
S2 = (y-yhat)2 / n-2 = SSE / n-2

S2 = SSE / n-2 where SEE=Syy-1hatSxy
*
100( 1 -)% confidence intervals are:

ohat +/- t/2 S [V X2 I nSxx]

1hat +/- t/2 (S I V Sxx)

*
statistical tests for 1 and o
intercept, o 


slope, .1
   Ho: o = 0 


Ho: 1 = 0

Ha:  1.
o > 0 


Ha:  1. 1 > 0 




       2.  o < 0 


       2. 1 < 0

       3. o not = 0 

       3. 1 not = 0

TS: t = ohat /S [V X2 I nSxx]
TS: t = 1hat /(S I V Sxx)

RR: For a given value of  

RR: Same as o
and df=n-2

1. Reject Ho it t > t
2. Reject Ho it t < - t
3. Reject Ho it Itl > t/2
*
a statistical test about 1  can be restated in terms of an F statistic and put into the format of an "Analysis of Variance" .

*
the test statistic is based on SSREG and SEE for:

Ho: 1 = 0

and

Ha: 1 not = 0

F Statistic:

F = { SSREG / 1} / [SSE /(n-2)] = SSREG / S2
-
therefore, large values of F would provide evidence for rejection of Ho in favor of Ha.

*
when o is known, the following are changes in the estimation and test procedure for 1.

· least squares estimate: 1  = (XiYi-o Xi) / Xi2 

*
standard error: 1hat = S / Xi2
where: S=(yi-yihat)2 / n-1

*
statistical test procedure:

Ho: 1 = 0

Ha:  1.  1 > 0

2. 1 < 0 

3. not = 0

TS: t = 1hat / [S2 / V Xi]

RR: For a given value of  and df=n-1

1. Reject Ho it t > t
2. Reject Ho it t < - t
3. Reject Ho it Itl > t/2
Inferences Concerning E(y)

*
E(y) can be obtained by evaluating the prediction equation:

yhat = 0hat  + 1hat (X)

*
the sampling distribution of y has a mean:

E(y) = 0+ 1(x)

*
variance: V(yhat) = ( 2 (1/n + [(x-xbar)2/Sxx])
*
100(1-)% confidence interval:

y +/- t/2 S V(1/n + [(x-xbar)2/Sxx])
where: s2  = SSE/n-2
and the t-value is based on df = n-2

*
Hypothesis Test:

HO: E(y) = O
Ha: 1. E(y) > O
       2. E(y) < O
     3. E(y) not = O
TS: t = yhat-/O [S V(1/n + [(x-xbar)2/Sxx])]
RR: for a general value of a and df = n-2

1. Reject Ho it t > t
2. Reject Ho it t < - t
3. Reject Ho it Itl > t/2
Predicting y for a Given Value of x

*
still use the least squares yhat as our predictor, but the corresponding interval about the observation y is called a prediction interval.

*
100(1-)% prediction interval:

y +/- t/2 S V(1+1/n + [(x-xbar)2/Sxx])
where: S = SSE/n-2

and the t/2 is based on df = n-2

*
here, we are predicting a variable rather than a constant E(y).

Examining Lack of Fit in Linear Regression:

*
test for validity of a linear regression model:

-
scatter plot: y versus x

-
plot of residuals: yi-yihat versus predicted values yihat
<
outliers or erroneous observations

<
violation of assumptions -constant variance

*
test for lack of fit of the fitted model by partitioning SSE into pure experimental error and lack of fit.

-
Iet yij denote the response for the jth observation at the ith level of the independent variable and ni observations at the ith level of the independent variable.
-
j(yij -yi)2 -pure experimental error w/ df = ni-1 the pooled sum of squares -SSPexp = j(yij -yi)2 and called the sum of the squares for pure experimental error with df = i(ni-1).

-
SSlack represents the remaining portion of SSE

SSE = SSPexp + SSlack

-
if SSE is based on df = n-2 the SSlack is based on df = n-2 -i(ni-1).

-
the model error variance can be found by dividing SSPexp and SSlack by their respective degrees of freedom.   the resulting estimates are called mean squares are representative by MSPexp and MSlack
-
the hypothesis test for the lack of test is:

Ho: a linear regression model is appropriate.

Ha: a linear regression model is not appropriate.

TS: F = MSlack / MSPexp
where:

MSPexp = SSPexp /i(ni-1)= j(yij -yi)2 / i(ni-1)

MSlack = (SSE - SSPexp)/(n-2-i(ni-1))

RR: for specified value of , reject the Ho (the adequacy of the model) if the computed value of F exceeds the table value for df1 = n-2-i(ni-1) and df2 = i(ni-1)

-
Conclusion: if the F test is significant, this indicates that a linear regression model is inadequate. a nonsignificant result indicates that there is insufficient evidence to suggest that the linear regression model is inappropriate. therefore, proceed based on the fitted linear regression line.

The Calibration Problem: Predicting x for a Given Value of y

*
predictor of x: xhat =(y-0hat)/1hat  

*
100(1-)% prediction limits for x:

Xuhat = Xbar + (1/1-c2){(xhat-xbar)+d}

XLhat = X bar + (1/1-c2) { (xhat-xbar)-d }

where.

d = [ t/2 s/1hat ]V[(n+1/n)( 1-c2) + {(xhat-xbar)2/Sxx}] 

Se2 = SSE/n-2 
C2 = [t/22S2/1hat 2Sxx]

and t/2 is based on df=n-2

A Look Ahead: Multiple Regression

*
expresses the dependent variable using more than one independent variable or higher degree terms than a single independent variable.

*
individual terms in a multiple regression model are classified by their exponents

-
the degree of a term is given by the sum of the exponents for independent variables appearing in the term

<
Xi -pth degree term (i.e. Xi2 -second degree term) 



<
xjPyjq- (p+q)th degree term (i.e. xj2yj –third degree term) 
 

*
identify specific model by the types of terms:

-
first-order model: contains all possible first-degree terms in the independent variables

-
second-order model: contains all possible first and second-degree terms in the independent variables
