CHAPTER 12

MULTIPLE REGRESSION AND

THE GENERAL LINEAR MODEL

Introduction

*
polynomial regression model:

y = o + 1 x + 2x2 +……. + pxp + 
with

E(y) = o + 1 x + 2x2 +……. + pxp
*
multiple regression model:

y = o + 1 x + 2x2 +……. + pxp + 
*
cross-product term: x3 might equal x1x2 (interaction)

*
first-order model:

-
which each of the independent variables appears, but there are no cross-product terms or terms in powers of the independent variables

y = o + 1 x + 2x2 +……. + 3x3 + 

o: y-intercept

-
other parameters: partial slopes

-
in general, j(j not = 0) represents the expected change in y for a unit increase in xj while holding all other x's constant the effects of the independent variables are additive

*
treatments:

-
levels of qualitative variables

y = o + 1 x + 2x2 +……. + 3x3 + 
where:

X1 = 1 if treatment 2, 

X1 = 0 otherwise 

X2 = 1 if treatment 3, 

X2 = 0 otherwise 

X3 = 1 if treatment 4, 

X3 = 0 otherwise

-
the general expression for the expected value of y is:

E(y) = o + 1 x + 2x2 + 3x3
The General Linear Model

*
a single general model can be used for multiple regression models in which response is related to a set of quantitative independent variables, and for models that relate y to a set of qualitative independent variables

*
y = o + 1 x + 2x2 +……. + kxk + 
Least Squares Solution to the General Linear Model

*
random sample of n measurements and the ith observation

yi = o + 1 xi1 + 2xi2 +……. + kxik + i  (i=1 ,2,….. n, n>k)

*
the least squares prediction equation for a random sample of n observation

yhat = ohat + 1hatx1 + 2hatx2 +…… + khatxk
-
choose parameters to minimize the expression SSE = i(yi-yihat)2
-
the estimates for the parameters must be found by solving a set of simultaneous equations (normal equations)

Inferences about o and 1 from ohat and 1hat
*
assumptions

-
all 's are independent

-
 = 0

-
variance  is constant = 2
-
normal distribution for 
*
ohat = o and 1hat = 1
*
ohat =  Vx2/nSxx
*
1hat =  / VSxx
*
estimate for 
-
S2 = S2 = SSE/df where: df = n-2

*
confidence interval

-
ohat +/- t S Vx2/nSxx
-
1hat +/- t {S/VSxx}
-
S = VSSE/df

*
statistical test

Ho: o = 0 



Ho: 1 = 0

t = [ohat -o]/S Vx2/nSxx

t = [1hat -1]I[S/VSxx]

Inferences About a Single Parameter in the General Linear Model

*
coefficient of determination (R2):

· the proportion of variability in the dependent variable y that i s accounted for by the independent variables x1 ,x2,….,xk of the model 

· when there is only one independent variable in the regression equation, r2 is the coefficient of determination

R2 Yx1,x2,……xk = (Syy – SSE)/Syy
Where:


Syy = Syi2 – [(y)2/n]

and

SEE = (yi -yihat)2
-
multicollinearity: the independent variables are correlated

-
estimated standard error in the general linear model:

sjhat = s [V 1/{Sxjxj(l- R2 xj.xl... xj-lxj+l,…,xk )}] 

where:

S = V SEE/[n-(k+1)]: standard deviation of the fitted line

Sxjxj = jXij2 -[(jXij)2/n]: the sum of squares

i(xij -xjbar)z: for the variable xj
*
100(1-)% confidence interval:

jhat +/ -t/2 Sjhat
where: is the tabulated t-value for df=n-(k+1 ) and a=/2

*
statistical test: 

  Ho: 
j = 0 

Ha: 1.   j > 0

        2.  j < 0 


       3.  j not = 0

T.S.: t = jhat/sjhat
R.R.: for df=n-(1 +k) and specified value , reject Ho if 

 1. t > t
2. t < - t
3. Itl > t/2
Inferences Concerning E(y) and y

*
prediction interval: constructed about variables, where as confidence intervals are constructed about parameters

Inferences Concerning a Set of 's in a General Linear Model

*
testing that a set of 's is equal to 0 in the general linear model

Ho: g+1=g+2=….. =k=0

Ha: at I east one of the 's is nonzero

*
complete model:

y = o+1x1+2x2+…. +gxg+g+1xg+1+….. +bkxk+, (k > g)

*
x's help to predict or explain y

*
confidence interval on average value of y:

yhat +1- tS V[{1/n} + [(x-xbar)2/Sxx]]

*
predict interval on a particular value of y:

yhat +/- t S V[ 1 + { 1/n} + [ (x-xbar)2/Sxx] ]

*
assumptions about the  are true

-
looking at the residuals

-
using a goodness of fit test

-
normal probability plot

*
a plot of j vs. yhat is good if no pattern -examples

*
mutlti-collinearity is a problem because the relations among the x's can cause 's to have the wrong sign and t statistics to be to small

*
reduced model:

y = o+1x1+2x2+…. +gxg
* 
drop in the sum of squares (SSdrop):

SSdrop = SSE2 –SSE1
error attributable to the variables xg+1…..xk

*
mean square drop (MSdrop): (SSE2 –SSE1)/k-g

*
MSE1 = SSE1/[n-(k+l )]: model 1

*
F = MSdrop/MSE1 : with k-g and n-(k+ 1) df's

Matrix Notation for the General Linear Model 

*
general linear model

-
Y = X + 
*
matrix equation for least squares estimates: 

hat = (X'X)-1 (X'Y)

*
inferences about a single i and a set of ’s: 

-
100( 1-)% confidence interval for i:

<
ihat +/- t/2s Vvii

<
statistical test for Ho:

i = 0

T.S.: t = ihat/ s Vvii
where:

s = VMSE = VSSE/[n-(k+1)]

SSE = Y'Y- 'hatX'Y

-
100(1-)% confidence interval for E(y): 

yhat = t/2s V l (X'X)-1 l
-
100(1-)% prediction interval for y:

yhat = t/2s V1+l (X'X)-1 l
where: l is a matrix

Selecting the Variables (Step 1)

*
pay attention to independent variable selection

*
ideally the independent variables selected would relate closely to the dependent variable

*
selection procedures:

-
perform all possible regressions

-
compute the error variance 2 using s2 and choosing the model that has the smallest value of s2
-
coefficient of determination (R2):

<
the models that have the highest R2 values, are selected

 <
one problem is that R2 increases for each independent variable, even when the new x has a very little predictive power

-
minimize (yj-yihat)z for validating portion of the total sample

-
data-splitting approach:

<
one part for fitting the various regression equations and the part for validating how well the prediction equations can predict future values

<
reasonable to split the total sample in half provided that sample size n is greater than 2p+20 where p is the number of parameters in the largest potential regression model

<
PRESS statistic for validation:

      n

PRESS =  (yj-yj*)2
     i=1

-
Cp statistic: balances all problems

Cp = (SEEp/S2) -(n-2p )

<
best fitting model: Cp = p

-
best subset regression: uses an algorithm to avoid running all possible regressions

-          backward elimination: method begins with the complete model with all independent variables entered and eliminates variables one at a time until a reasonable candidate regression model is found

-          stepwise regression: works with the model y=o+ and adds variables one 



         at a time until a stopping criterion is satisfied

Model Formation (Step 2)

*
assume a regression model that is of lower order than is the actual model and conduct a test of the inadequacy of the fitted polynomial model

*
assume a fitted model that for lack of fit i s to examine scatter plots of residuals (yj-yihat) versus

*
Cobbs-Douglas production equation:

-
a nonlinear equation in terms of 's

-
y = 1l2C3
*
nonlinear least squares

Residual Analysis: Checking Model Assumptions (Step3)

*
basic assumptions for a regression model are:

-
zero expectation: E(j) = for all i

· constant variance: V(i) = 2 for all i 

· normality: i is normally distributed 

· independence: the i 's are independent

*
zero expectation: use of residual plots to check for inadequacy

*
constant variance:

-
regression line is not constant

-
weighted least squares: improves the statistical tests (F and t 



       tests) on model parameters and the 



       interval estimates for a parameter

*
normality:

-
forms of nonnormality (skewness and / or outliers) may be

detected through the use of certain scatterplots and residual plots
probability plot of the residuals:

<
see Figure 11.26, pg. 495

*
independence:

-
time series data: observations a retaken at successive points in time

-
test for serial correlation: Durbin-Watson test 

n-1

d = [   (t+1 hat - (that)2]/ t(that)2
       t=1

<
positive serial correlation: d < 2

<
negative serial correlation: d > 2

<
if there is positive serial correlation then successive residuals will be similar and their square differences will tend to be smaller than it would be if the residuals were uncorrelated

Odds and Ends-GenCat: A General Linear Model Program For Categorical Data
*
construct u different functions of the population probabilities by fitting the following model:

A = x
where:

 jij = 1

y = x : general linear model

*
null hypothesis:

Ho: C = 0

