Business Statistics: A Decision-Making Approach 6th Edition

Chapter 13

Introduction to Linear Regression and Correlation Analysis

Fundamentals of Business Statistics - Murali Shanker

Chap 13-1

Chapter Goals

To understand the methods for displaying and describing relationship among variables

Fundamentals of Business Statistics – Murali Shanker

Methods for Studying Relationships

- Graphical
 - Scatterplots
 - Line plots
 - 3-D plots
- Models
 - Linear regression
 - Correlations
 - Frequency tables

Fundamentals of Business Statistics – Murali Shanker

Chap 13-3

Two Quantitative Variables

The *response variable*, also called the *dependent variable*, is the variable we want to predict, and is usually denoted by *y*.

The *explanatory variable*, also called the *independent variable*, is the variable that attempts to explain the response, and is denoted by *x*.

Fundamentals of Business Statistics – Murali Shanker

YDI 7.1

Response (y)	Explanatory (x)
Height of son	
Weight	

Fundamentals of Business Statistics – Murali Shanker

Chap 13-5

Scatter Plots and Correlation

- A scatter plot (or scatter diagram) is used to show the relationship between two variables
- Correlation analysis is used to measure strength of the association (linear relationship) between two variables
 - Only concerned with strength of the relationship
 - No causal effect is implied

Fundamentals of Business Statistics – Murali Shanker

The following graph shows the scatterplot of Exam 1 score (x) and Exam 2 score (y) for 354 students in a class. Is there a relationship? Fundamentals of Business Statistics - Murall Shanker Chap 13-7

Correlation Coefficient

(continued)

- The population correlation coefficient ρ (rho) measures the strength of the association between the variables
- The sample correlation coefficient r is an estimate of ρ and is used to measure the strength of the linear relationship in the sample observations

Fundamentals of Business Statistics – Murali Shanker

Features of ρ and r

- Unit free
- Range between -1 and 1
- The closer to -1, the stronger the negative linear relationship
- The closer to 1, the stronger the positive linear relationship
- The closer to 0, the weaker the linear relationship

Fundamentals of Business Statistics – Murali Shanker

YDI 7.3

What kind of relationship would you expect in the following situations:

- age (in years) of a car, and its price.
- number of calories consumed per day and weight.
- height and IQ of a person.

Fundamentals of Business Statistics – Murali Shanker

YDI 7.4

Identify the two variables that vary and decide which should be the independent variable and which should be the dependent variable.

Sketch a graph that you think best represents the relationship between the two variables.

- The size of a persons vocabulary over his or her lifetime.
- 2. The distance from the ceiling to the tip of the minute hand of a clock hung on the wall.

Fundamentals of Business Statistics - Murali Shanker

Chap 13-15

Introduction to Regression Analysis

- Regression analysis is used to:
 - Predict the value of a dependent variable based on the value of at least one independent variable
 - Explain the impact of changes in an independent variable on the dependent variable

Dependent variable: the variable we wish to explain

Independent variable: the variable used to explain the dependent variable

Fundamentals of Business Statistics – Murali Shanker

Simple Linear Regression Model

- Only one independent variable, x
- Relationship between x and y is described by a linear function
- Changes in y are assumed to be caused by changes in x

Fundamentals of Business Statistics – Murali Shanker

Linear Regression Assumptions

- Error values (ε) are statistically independent
- Error values are normally distributed for any given value of x
- The probability distribution of the errors is normal
- The probability distribution of the errors has constant variance
- The underlying relationship between the x variable and the y variable is linear

Fundamentals of Business Statistics – Murali Shanker

Residual

A **residual** is the difference between the observed response y and the predicted response \hat{y} . Thus, for each pair of observations (x_i, y_i) , the i^{th} residual is $e_i = y_i - \hat{y}_i = y_i - (b_0 + b_1 x)$

Fundamentals of Business Statistics – Murali Shanker

Least Squares Criterion

 b₀ and b₁ are obtained by finding the values of b₀ and b₁ that minimize the sum of the squared residuals

$$\sum e^{2} = \sum (y - \hat{y})^{2}$$
$$= \sum (y - (b_{0} + b_{1}x))^{2}$$

Fundamentals of Business Statistics - Murali Shanker

Chap 13-25

Interpretation of the Slope and the Intercept

- b₀ is the estimated average value of y when the value of x is zero
- b₁ is the estimated change in the average value of y as a result of a oneunit change in x

Fundamentals of Business Statistics – Murali Shanker

The Least Squares Equation

■ The formulas for b₁ and b₀ are:

$$b_1 = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

algebraic equivalent:

$$b_1 = \frac{\sum xy - \frac{\sum x\sum y}{n}}{\sum x^2 - \frac{(\sum x)^2}{n}}$$

and

$$b_0 = \overline{y} - b_1 \overline{x}$$

Fundamentals of Business Statistics – Murali Shanker

Chap 13-27

Finding the Least Squares Equation

- The coefficients b₀ and b₁ will usually be found using computer software, such as Excel, Minitab, or SPSS.
- Other regression measures will also be computed as part of computer-based regression analysis

Fundamentals of Business Statistics - Murali Shanker

Simple Linear Regression Example

- A real estate agent wishes to examine the relationship between the selling price of a home and its size (measured in square feet)
- A random sample of 10 houses is selected
 - Dependent variable (y) = house price in \$1000s
 - Independent variable (x) = square feet

Fundamentals of Business Statistics - Murali Shanker

Chap 13-29

Sample Data for House Price Model

House Price in \$1000s	Square Feet
(y)	(x)
245	1400
312	1600
279	1700
308	1875
199	1100
219	1550
405	2350
324	2450
319	1425
255	1700

Fundamentals of Business Statistics – Murali Shanker

Interpretation of the Intercept, b₀

house price = 98.248 + 0.110 (square feet)

- b₀ is the estimated average value of Y when the value of X is zero (if x = 0 is in the range of observed x values)
 - Here, no houses had 0 square feet, so b₀ = 98.24833 just indicates that, for houses within the range of sizes observed, \$98,248.33 is the portion of the house price not explained by square feet

Fundamentals of Business Statistics - Murali Shanker

Chap 13-33

Interpretation of the Slope Coefficient, b₁

house price = 98.24833 + 0.10977 (square feet)

- b₁ measures the estimated change in the average value of Y as a result of a oneunit change in X
 - Here, $b_1 = .10977$ tells us that the average value of a house increases by .10977(\$1000) = \$109.77, on average, for each additional one square foot of size

Fundamentals of Business Statistics – Murali Shanker

Least Squares Regression Properties

- The sum of the residuals from the least squares regression line is 0 $(\sum (y-\hat{y})=0)$
- The sum of the squared residuals is a minimum (minimized $\sum (y-\hat{y})^2$)
- The simple regression line always passes through the mean of the y variable and the mean of the x variable
- The least squares coefficients are unbiased estimates of β_0 and β_1

Fundamentals of Business Statistics - Murali Shanker

Chap 13-35

YDI 7.6

The growth of children from early childhood through adolescence generally follows a linear pattern. Data on the heights of female Americans during childhood, from four to nine years old, were compiled and the least squares regression line was obtained as $\hat{y} = 32 + 2.4x$ where \hat{y} is the predicted height in inches, and x is age in years.

- Interpret the value of the estimated slope $b_1 = 2.4$.
- Would interpretation of the value of the estimated y-intercept, b₀ = 32, make sense here?
- What would you predict the height to be for a female American at 8 years old?
- What would you predict the height to be for a female American at 25 years old? How does the quality of this answer compare to the previous question?

Fundamentals of Business Statistics – Murali Shanker

Coefficient of Determination, R²

- The coefficient of determination is the portion of the total variation in the dependent variable that is explained by variation in the independent variable
- The coefficient of determination is also called R-squared and is denoted as R²

$$0 \le R^2 \le 1$$

Fundamentals of Business Statistics – Murali Shanker

Chap 13-37

Coefficient of Determination, R²

(continued)

Note: In the single independent variable case, the coefficient of determination is

$$R^2 = r^2$$

where:

 R^2 = Coefficient of determination r = Simple correlation coefficient

Fundamentals of Business Statistics – Murali Shanker

SPSS Output

Model Summary

			Adjusted	Std. Error of
Model	R	R Square	R Square	the Estimate
1	.762ª	.581	.528	41.33032

a. Predictors: (Constant), Square Feet

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	18934.935	1	18934.935	11.085	.010a
	Residual	13665.565	8	1708.196		
	Total	32600.500	9			

a. Predictors: (Constant), Square Feet

Coefficients

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	98.248	58.033		1.693	.129
	Square Feet	.110	.033	.762	3.329	.010

Dependent Variable: House Price

Fundamentals of Business Statistics – Murali Shanker

Chap 13-41

Standard Error of Estimate

- The standard deviation of the variation of observations around the regression line is called the standard error of estimate
- The standard error of the regression slope coefficient (b₁) is given by s_{b1}

Fundamentals of Business Statistics – Murali Shanker

b. Dependent Variable: House Price

Inference about the Slope: t Test

- t test for a population slope
 - Is there a linear relationship between x and y?
- Null and alternative hypotheses
 - H_0 : $\beta_1 = 0$ (no linear relationship)
 - H_1 : $\beta_1 \neq 0$ (linear relationship does exist)
- Test statistic

•

$$t = \frac{b_1 - \beta_1}{s_{b_1}}$$

where:

b₁ = Sample regression slope coefficient

 β_1 = Hypothesized slope

s_{b1} = Estimator of the standard error of the slope

Chap 13-45

d.f. = n - 2

Fundamentals of Business Statistics - Murali Shanker

Inference about the Slope: __t Test

(continued)

House Price in \$1000s (y)	Square Feet (x)
245	1400
312	1600
279	1700
308	1875
199	1100
219	1550
405	2350
324	2450
319	1425
255	1700

Estimated Regression Equation:

house price = 98.25 + 0.1098 (sq.ft.)

The slope of this model is 0.1098

Does square footage of the house affect its sales price?

Chap 13-46

Fundamentals of Business Statistics – Murali Shanker

Regression Analysis for Description

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept 98.24833 58.03348 1.69296 0.12892 -35.57720 232.07386 Square Feet 0.10977 0.03297 3.32938 0.01039 0.03374 0.18580							
		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Square Feet 0.10977 0.03297 3.32938 0.01039 0.03374 0.18580	Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
	Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

Since the units of the house price variable is \$1000s, we are 95% confident that the average impact on sales price is between \$33.70 and \$185.80 per square foot of house size

This 95% confidence interval does not include 0.

Conclusion: There is a significant relationship between house price and square feet at the .05 level of significance

Fundamentals of Business Statistics – Murali Shanker

Chap 13-49

Residual Analysis

- Purposes
 - Examine for linearity assumption
 - Examine for constant variance for all levels of x
 - Evaluate normal distribution assumption
- Graphical Analysis of Residuals
 - Can plot residuals vs. x
 - Can create histogram of residuals to check for normality

Fundamentals of Business Statistics – Murali Shanker

