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ABSTRACT 
 
 

Data mining is increasingly being used to gain competitive advantage.  In this chapter, we propose a 
principle of maximum performance efficiency (MPE) as contribution to the data-mining toolkit. This 
principle seeks to estimate optimal or boundary behavior, in contrast to techniques like regression 
analysis, which predict average behavior. This MPE principle is explained in the context of activity-
based costing situation. Specifically, we consider the Activity-Based Costing situation in which 
multiple activities generate a common cost pool.  Individual cost drivers are assigned to the respective 
activities but allocation of the cost pool to the individual activities is regarded as impractical or 
expensive. Our study focuses on published data from a set of property tax collection offices, called 
rates departments, for the London metropolitan area.  We define what may be called benchmark or 
most efficient average costs per unit of driver.  The MPE principle is then used to estimate the best 
practice cost rates. A validation approach for this estimation method is developed in terms of what we 
call normal-like-or-better performance effectiveness.  Extensions to time series data on a single unit, 
and marginal cost oriented basic cost models are also briefly described.  In conclusion, we discuss 
potential data-mining applications and considerations.
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INTRODUCTION 
 
In recent years, companies have started to realize the potential of using data mining techniques as a 
form of competitive advantage. For example, in the finance industry, in the decade from 1980 to 1990, 
the number of credit cards issued doubled to about 260 million. But, in the next ten years, however, 
there was not another doubling of this number. Given that there are now about 280 million people in 
the United States, it is widely believed that the credit-card market is saturated (Berson, Smith, & 
Thearling, 2000). In such situations, any gains by one company leads to a loss for another — a zero-
sum game. To gain competitive advantage, credit card companies are now resorting to data-mining 
techniques to retain and identify good customers at minimal cost. 
The cell phone industry is also expected to go the way of the credit card market. Soon, the cellular 
industry will be saturated; everybody who needs cells phone will have one.  Companies who are able 
to predict and understand customer needs better, will probably be the ones who will survive. The 
cellular industry, like the credit card industry, is likewise resorting to data-mining techniques to 
identify traits for retaining good customers. 
Research in data mining has so far focused on either developing new techniques or on identifying 
applications. Being a multidisciplinary field, data mining techniques have originated from areas of 
artificial intelligence, database theory, visualization, mathematics, operations research, and statistics, 
among others. Many of the well-known statistical techniques like nearest neighbor, clustering, and 
regression analysis are now part of the data-mining toolkit.  
In this chapter, we present a new technique based on the principal of maximum performance efficiency 
(MPE). While techniques like linear regression analysis are used to predict average behavior, MPE 
seeks to predict boundary or optimal behavior. In many cases, such models are actually more desirable. 
For example, in a saturated credit card or cellular market, a company may seek to predict 
characteristics of its best customers. In essence, choosing to concentrate on customers who are low 
risk/costs to maximize profit. Such models, usually called ceiling/floor models, can also be used as part 
of data mining techniques for benchmarking. For example, a company may be interested in comparing 
the quality of its products over different product lines. The MPE criterion seeks to identify the 
characteristics of the best performing unit, thus allowing the company to implement these measures in 
other units to improve their quality, and hence the competitive advantage of the company across 
product lines. 
In this chapter we propose the MPE principle and show how it can be used to estimate the best practice 
costs in an activity-based costing situation. The rest of the chapter is organized as follows. In the next 
section, we present our initial motivation for developing the MPE principle. As an example, we 
consider an activity-based costing situation where multiple activities generate a common cost pool. 
Our objective is to estimate the best practice cost rates. The following section then distinguishes 
between basic cost models and the models used to estimate the parameters of the basic cost models. 
The maximum performance efficiency (MPE) principle is developed using an aggregate efficiency 
measure that is the sum or average of performance efficiencies. Then the MPE principle is used to 
derive the linear programming estimation model.  The next section describes the data for the study. 
The MPE criterion is applied to this data, and the results are compared with a previous analysis to 
assess face validity for the proposed new method. The following section proposes a model aptness 
theory based on the gamma distribution and a technique called vertical density representation. The 
fitted performance efficiency scores are required to satisfy a benchmark for validity of the goal 
assumption called normal-like-or-better performance effectiveness. This is followed by limitations, and 
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some extensions to other basic cost models. The next section discusses potential data-mining 
applications and considerations, which is followed by the Conclusions section.  
Remarks on notation:  In summation notations using ∑ the lower limit is omitted when it is clear from 
the context.  Omission of upper limits indicates summation over all values of the index. 
 

MOTIVATION 
 
Managerial accountants are often called upon to provide measures of performance efficiency.  Such a 
task is essentially trivial if there is a single input measure and a single output measure.  One could 
simply divide the output measure by the input measure and use the resulting performance efficiency 
measure to either: (1) compare the unit's performance over time, or (2) compare the unit's performance 
with other comparable units. 
While there are numerous purposes for performance efficiency measures (i.e., performance evaluation, 
managerial compensation, benchmarking, and cost control to name a few), the specific purpose of this 
research is to explain and illustrate how a proposed estimation principle can be used with activity-
based costing for determining performance efficiency measures for the purpose of cost control. 
Activity-based costing is one approach that could be used to develop a performance measure for such 
purposes.  Activity-based costing consists of disaggregating costs into specific cost pools that can be 
linked causally with their respective activities.  Cooper & Kaplan (1992) illustrate how such an 
approach can be used with purchase order data.  The approach consists of dividing the monthly cost of 
processing purchase orders by the number of purchase orders processed per month. This purchase 
order cost can then be used as a benchmark for comparison purposes.  This approach is very simple 
and easy to use if there is only one cost pool and one activity with a single cost driver.  But there are 
many realistic scenarios in which there are multiple cost drivers for a single cost pool.  For example, 
faculty salaries for an academic unit (department or college) appear to be driven by at least two cost 
drivers.  Both student credit hours generated and the level of academic degrees offered (bachelors, 
masters, and doctoral) appears to drive the amount of faculty salaries for an academic unit.  The 
dilemma is that faculty salaries are in a single cost pool and there is no simple and objective method 
for disaggregating faculty salaries.  The task of attributing the faculty salary pool to separate activities 
and cost drivers is essentially impossible.  There is no easy way for determining how much of the 
faculty salary pool is due to: (1) the generation of student credit hours, and (2) the level of academic 
degrees offered by academic unit. 
The methodology explained and illustrated in this chapter allows for the inclusion of multiple cost 
drivers in determining performance efficiency measures. The allocation of the combined cost pool to 
individual activities might be regarded as not objectively possible, impractical, expensive, or of 
insufficient additional value for the costing system.  We first consider the problem of estimating 
average costs per unit of cost driver in such situations when cross-sectional data are available for a set 
of what we call comparable business units.  We also consider application of the same techniques to 
basic cost models having marginal cost assessment capability, and briefly discuss the setting in which a 
single business unit is observed over several time periods 
We define benchmark or best practice average costs per unit of cost driver as the average cost rates 
associated with the most efficient unit(s).  A principle of maximum performance efficiency (MPE) is 
proposed and estimation criteria based on efficiency measures are derived from this principle.  This is 
a generalization of the maximum decisional efficiency  (MDE) principle introduced in Troutt (1995) 
and also discussed in Troutt (1997) and Troutt et al. (1997).  The efficiency measure used may be 
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considered analogous to the cost of unused capacity concept proposed by Cooper & Kaplan (1992).  
These models also provide a different view on the lack of proportionality of costs to driver levels 
documented in Noreen & Soderstrom (1994). 
A basic assumption underlying the estimation principle employed here is that all business units under 
comparison seek to maximize their efficiencies in performing their services.  The data we study are 
from public service entities that are presumed to have this goal on behalf of the public interest.  
However, this assumption needs verification as a kind of model aptness or validation issue similar to 
the requirement of normally distributed errors in OLS regression. As an estimation model aptness test 
we propose what may be called a normal-like-or-better performance effectiveness measure. 
The estimation models proposed here are linear programming (LP) models.  Use of such models in 
cost accounting is not new.  See for example, Demski (1967), Onsi (1970), Kaplan & Thompson 
(1971), and Itami & Kaplan (1980).  These previous works have generally utilized LP models 
assuming that data are known.  That is, they assume that technological coefficients and resource levels 
are given.  Then the dual optimal solution (especially the shadow prices) of these fully specified LP 
models has been employed for (i) overhead allocation (Kaplan & Thompson, 1971), (ii) transfer 
pricing (Onsi, 1970), and (iii) reallocation of costs to multiple products (Itami & Kaplan, 1980).  
However, the use of LP models enters in a different way in this chapter.  Namely, the estimation 
models are themselves LP problems in which the decision variables are the unknown best practice cost 
rates. The next section distinguishes between basic cost model, and the models used to estimate the 
parameters of the basic cost models. The MPE principle is also presented here. 

 
BASIC COST MODELS AND ESTIMATION MODELS 
 
There are two uses of the word model in this chapter.  By the basic cost model we mean the assumed 
relationship between the cost driver of an activity and its contribution to the total cost pool.  The 
simplest case is that of proportional variation.  Let yr be the amount of the r-th cost driver.  Under the 
basic cost model the contribution to the total cost pool will be aryr, where ar may be called the average 
cost per unit of yr or simply the cost rate.  This chapter focuses on this basic cost model.  Some other 
models such as for estimating marginal costs are discussed briefly below.  The other use of the word 
model refers to the method used to solve for estimates of the basic cost model parameters — the a*r.   
The estimation models used here are LP models.  As noted above, this usage of LP does not appear to 
be similar to previous uses in the accounting literature, but is a consequence of the estimation principle 
used. 
Suppose there are r=1…Rr activities with associated cost driver quantities of yr, respectively.  Then as 
in Cooper & Kaplan (1992) the cost of resources consumed is given by ∑ ar yr.   If x is the actual total 
cost pool associated with these activities, the cost of resources supplied, then there may be a 
difference, s ≥ 0, such that 
 
                                         ∑ ar yr + s = x.                                          (2.1)                      
 
Cooper & Kaplan (1992) call s the cost of unused capacity.  In their analysis, the x value was a budget 
figure and the yr could vary due to decreased demands.  We start from the same construct but regard 
variations of the yr and x as due to more or less efficiency.  By defining what may be called best 
practice ar values, we therefore associate the s value with possible inefficiency of a business unit, a 
cost of inefficiency. 
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Thus suppose we have j = 1…N comparable business units, achieving yrj units of driver r, respectively, 
and with associated cost pools, xj.  In addition to having the same activities and cost drivers, we further 
require that comparable units be similar in the sense that the practices, policies, technologies, 
employee competence levels and managerial actions of any one should be transferable, in principle, to 
any other.  Define ar* as the vector of cost rates associated with the most efficient unit or units under 
comparison.  Then in the equation                              
  

∑
=

R

r 1
ar*yrj  + sj = xj       for all j,                              (2.2) 

  
the cost of unused capacity, sj, may be interpreted as an inefficiency suffered by a failure to achieve 
larger yrj  values, smaller xj value, or some combination of these.  The ratio vj  = ∑  ar*yrj / xj  ,  is an 
efficiency measure for the j-th unit when the ar* are the true benchmark cost rates and ∑  ar*yrj ≤ xj   
holds for all units. A technique for estimating parameters in efficiency ratios of the above form was 
proposed in Troutt (1995).  In that paper the primary data were specific decisions.  Here a more general 
form of that approach called maximum performance efficiency (MPE) is proposed and applied to 
estimate the benchmark ar* values.  Assume that each unit j = 1…N, seeks to achieve maximum (1.0) 
efficiency.  Then the whole set of units may be regarded as attempting to maximize the sum of these 
efficiency ratios, namely, ∑∑ar*yrj / xj. 
The maximum performance efficiency estimation principle proposes estimates of the ar* as those 
which render the total, or equivalently the average, of these efficiencies a maximum.  
 
Maximum Performance Efficiency (MPE) Estimation Principle: In a performance model 
depending on an unknown parameter vector, select as the estimate of the parameter vector that value 
for which the total performance is greatest. 
 
Use of the word performance is stressed in the MPE name to emphasize the more general utility of the 
approach than was indicated by the earlier MDE term.  Managerial performance, such as in the units 
under study here, involves many kinds, levels and horizons of decisions.  
Define the data elements Yrj by Yrj = yrj /xj .  Then the MPE estimation criterion for the benchmark ar* 
values is given by 
 

MPE:                          max ∑∑
= =

N

j

R

r1 1
ar Yrj                                                                         (2.3)          

s.t.            ∑
=

R

r 1
ar Yrj  ≤ 1  for all j                                          (2.4) 

                                                                         ar   ≥  0  for all r                                          (2.5) 
 
Problem MPE is a linear programming problem.  Its unknown variables are the best practice cost rates, 
the ar* values.  Solution of this model provides values for the ar* as well as the unit efficiencies, vj.  A 
model adequacy or validation approach for this estimation procedure is proposed in a later section.  As 
a linear programming problem, the MPE model is readily solved by a wide variety of commonly 
available software products.  MPE may be seen here to be an estimation criterion analogous to the 
ordinary least squares errors criterion in regression.  The cost model, ∑ ar Yrj is analogous to the 
regression model. 
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APPLICATION TO THE DATA 

 
In this section we describe the data and apply the MPE estimation criterion.  In the initial application 
of the MPE criterion one cost rate was estimated to be zero.  In this section we concentrate on the case 
in which all estimated cost rates must be positive and show how the MPE criterion is modified for that 
case.  

-------------------------- 
Table 1 About Here 
------------------------- 

 
The data for this study are due to Dyson & Thanassoulis  (1988), (DT) and are reproduced here in 
Table 1, first six columns.  These data were collected for a set of property tax collection offices, called 
rates departments, in the London Boroughs and Metropolitan Districts.  A more complete description 
of the data is given in Thanassoulis, Dyson, & Foster (1987), (TDF).  Total annual costs, measured in 
units of £100,000, for these offices (units), were collected along with activity driver levels for four 
activities.  The first three activities, collection of non-council hereditaments, rate rebates generated, 
and summonses issued and distress warrants obtained, were measured in units of 10,000, 1,000, and 
1,000, respectively.  The fourth, net present value of non-council rates collected, was measured in units 
of £10,000.  This last one was included as a cost driver (called an output by DT, DTF) to reflect the 
additional administrative effort exerted to ensure the timely payment of large revenue producing cases.  
TDF briefly discuss the possible disaggregation of the cost pools.  They indicate that this would have 
been possible to some extent but decided against this for several reasons.  First, these costs represented 
the cost of real resources used and available for management deployment.  Next they felt that the 
increased number of variables that would result might have tended to decrease the discrimination 
power of the data envelopment analysis (DEA) method they were studying.  Next, and importantly, it 
was felt that the disaggregated data were less reliable.  This concern is well founded, particularly in the 
present context.  Datar & Gupta (1994) have shown that disaggregation can actually increase errors. 
The method used in DT and TDF was a modification of data envelopment analysis (DEA), another 
efficiency estimation technique.  It is worthwhile to briefly discuss DEA in regard to the above and 
other relevant points.  An introduction to DEA is contained in Charnes et al. (1994).  There are several 
DEA models but we limit our coverage to that used in DT.  If we use the ar notation for output weights 
in the DEA model M1 of DT (page 564) we obtain the model(s): 

                                                  
M1(jo)                max     ho  = ∑

r
ar Yrjo                                     (3.1) 

                                      s.t.      ∑
=

R

r 1
ar Yrj  ≤  1, for all j                   (3.2) 

                                                            ar  ≥  0, for all r                              (3.3) 
 

Unlike the one-pass solution of model MPE, Model M1(jo) is solved for each unit, (jo), in turn.  The 
solutions arjo therefore depend on which unit is being featured in the objective function.  Typically 
some of the arjo values will be zero for various units.  In the present cost rates context the following 
interpretation can be given to the M1(jo) DEA model.  If unit jo were allowed to choose the activities 
and drivers to become applicable for the entire group of units then the M1(jo) model solution obtains 
these in such a way as to give that unit the most favorable efficiency score.   The principal difficulty 
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here is that no consensus is being achieved on the most efficient cost rates.   With the M1 (jo) DEA 
model each unit can select cost rates that make it look most favorable.  DT call this phenomenon 
weights flexibility. Their work was motivated, in part, to modify the M1(jo) DEA technique to limit 
this flexibility.  DT gives a more extensive discussion of this DEA limitation. 
Except in unusual circumstances, activity cost rates, ar, can only be positive.  In this section we 
consider this requirement as a preemptive priority.   For the solution values, ar*, to be strictly positive, 
it is necessary that they be basic variables in an optimal solution.  This may occur gratuitously.  
Otherwise one or more may be nonbasic, and therefore have value zero.  The standard LP solution 
report provides reduced costs.  For a variable with optimal value of zero the reduced cost may be 
interpreted as follows.  It indicates the smallest amount by which the objective function coefficient for 
the variable must be increased in order that the variable becomes positive in an optimal solution.     
The last column of Table 1 gives the efficiency scores obtained by model MPE with preemptive 
positive costs.  Descriptive statistics have been added as supplemental information. The MPE model 
was solved using SAS/IML (1995), which includes a linear programming call function.  The initial 
solution assigned a zero optimal value only to a1*.  (The full solution for this case was a1*=0, 
a2*=0.0882, a3*=0.2671, a4*=0.0664).  Thus it was deemed necessary to implement the preemptive 
positive weights modification.  The reduced cost for variable a1 was given as -1.220440.  The objective 
coefficient was 55.52898.  Therefore the modified procedure required increasing the coefficient of a1 
to 56.747.  The resulting estimates were as follows: 

 
   a1* =0.2618, a2* =0.0494, a3* =0.1398, a4* =0.1280                (3.4) 

           
The corresponding efficiency scores of the units are shown in the last column of Table 1.  Table 2 
gives descriptive statistics for the Yr data. 

 
-------------------------- 
Table 2 About Here 

-------------------------- 
 

While not true for the example presented here, it is possible that more than one cost rate is initially 
estimated as zero, or the reduced cost is also zero when strict positivity is required. Then, it is 
necessary to proceed as follows.  Suppose an auxiliary variable m, and nr new constraints ar ≥ m are 
joined to the MPE model.  If the optimal value of m is positive, then so it must be also for all the cost 
rates. Let λ be a nonnegative parameter chosen by the analyst and consider the modified objective 
function given by 

 
                               max  ∑∑

j r
ar  yrj + λ m       (3.5) 

    
When the value of λ is zero the objective function is the same as the original one with m* = 0.  We 
have the following theorem whose proof is given the Appendix. 

 
Theorem 1:  Let z *(λ), ar*(λ), and m* (λ) be the solution of the MPE (λ) model: 

 
MPE:                   max z (λ) = ∑∑

j r
ar  yrj + λ m         (3.6) 
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s.t.     Σ ar yrj  ≤  1, for all j        (3.7) 
       ar  ≥ m, for all r       (3.8) 

                 ar  ≥ 0, for all r, m unrestricted     (3.9) 
 

Then (1): z*(λ) is monotone nondecreasing in λ and z*(λ) →∞ as λ→0; and (2): Σ ar*(λ) Yrj is 
monotone nonincreasing in λ. 
We propose the solution for positive weights to be that corresponding to the greatest lower bound of λ 
values for which m*(λ) > 0.  This may be estimated by trial and error.                 
We develop a rationale for such positive weights procedures by writing the MPE model objective 
function in the form ∑ar (∑ Yrj).  If maximization of this objective function yields a1* = 0, then 
evidently the coefficient, ∑ Y1j is too small in some sense relative to the other coefficients. It may be 
noted that the Yrj = yrj/xj data are in the nature of reciprocal costs. When the sum of these is too small 
the implication is that their own reciprocals, the xj/yrj, are on average too large. This is suggestive of 
inefficiency with respect to the r-th activity.  In such a case, assignment of a zero optimal cost estimate 
would mask this kind of inefficiency.  By using the reduced cost adjustment, or adding the λm term to 
the objective function, a compensation is made for coefficients that are apparently too small in that 
sense. 
Some comparisons with the results of Dyson & Thanassoulis (1988) can now be discussed.  As part of 
their study, a regression through the origin was obtained. The coefficients of that regression model can 
be interpreted as average cost rates for these activities.  The results were as follows: 

 
=1a 0.5042, =2a  0.0785, =3a  0.1765, =4a 0.1940     (3.10) 

 
It will be noted that these average rates are uniformly higher than the presently estimated rates in (3.4), 
giving a measure of face validity.  That is, it is necessary that the cost rates of the most efficient units 
be lower than the average cost rates for all the units.  Also the four departments rated as most efficient 
by the present method are the same as those indicated by the Dyson & Thanassoulis (1988) approach. 
It may be observed that the preliminary regression step also gives information on the question of 
positivity of the cost rates.  The positivity of 1a  gives further evidence on that for a1*.  Here 1a  is 
positive and significant.  (The significance level was not specified in DT).  Since the units are assumed 
to be comparable it appears unlikely that one or a few could perform activity one with no cost while 
the typical unit does incur cost for the activity.  If a particular unit could produce an activity with zero 
cost (ar*= 0) while the average unit does incur cost for the activity, then it must have a radically 
superior process not actually comparable with the others.   Similarly, this regression model also 
validates activity four as influential on costs. The next section discusses model aptness. 

     
ESTIMATION CRITERION QUALITY ISSUES 

 
A basic assumption underlying the MPE estimation principle’s applicability is that the sample of units 
under analysis does, in fact, have the goal of achieving maximum (1.0) efficiency. This is a model 
aptness issue that parallels the requirement of N(0,σ2) residuals in OLS regression theory.  In the 
present MPE case the corresponding issue is to specify a measured characteristic of the vj that indicates 
consistency with a goal or target of unity (1.0) efficiency.  In this section we propose what may be 
called the normal-like-or-better effectiveness criterion for these fitted efficiency scores. 
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As a model for appropriate concentration on a target we begin with an interpretation of the multivariate 
normal distribution, N (µ,Σ), on nℜ .  If a distribution of attempts has the N(µ,Σ) or even higher 
concentration of density at the mode µ, then we propose this as evidence that µ is indeed a plausible 
target of the attempts.  This is exemplified by considering a distribution model for the results of 
throwing darts at a bull’s-eye target.  Common experience suggests that a bivariate normal density 
represents such data reasonably well. Steeper or flatter densities would still be indicative of effective 
attempts, but densities whose modes do not coincide with the target would cause doubts about whether 
the attempts have been effective or whether another target better explains the data. We call this normal-
like-or-better (NLOB) performance effectiveness.  It is next necessary to obtain the analog of this 
criterion for the efficiency performance data Yrj relevant to the present context. 
If x is distributed as N (µ,Σ) on nℜ n then it well known that the quadratic form, w(x)= (x-µ)'Σ−1(x-µ) 
is gamma(α,β),  where  α = n/2 and  β=2.  This distribution is also called the Chi-square distribution 
with n degrees of freedom (see Law & Kelton, 1982).  We may note that for this case w(x) is in the 
nature of a squared distance from the  target set {µ}.  It is useful to derive this result by a different 
technique. Vertical density representation (VDR), is a technique for representing a multivariate density 
by way of a univariate density called the ordinate or vertical density, and uniform distributions over the 
equidensity contours of the original multivariate density.  VDR was introduced in Troutt (1993).  See 
also Troutt (1991), Kotz & Troutt (1996), Kotz et al. (1997), and Troutt & Pang (1996).  The version 
of VDR needed for the present purpose can be derived as follows. Let w(x) be a continuous convex 
function on nℜ   with range [0,∞); and let g(w) be a density on [0,∞). Suppose that for each value of 
u≥0, x is uniformly distributed on the set {x:w(x)=u}. Consider the process of sampling a value of u 
according to the g(w) density and then sampling a vector, x, according to the uniform distribution on 
the set {x:w(x)=u}.  Next let f(x) be the density of the resulting x variates on nℜ .   Finally let A(u)  be 
the volume (Lebesgue measure) of the set  {x : w(x) ≤ u}.  Then we have the following VDR theorem 
which relates g(w) and f(x) in nℜ .  The proof is given in the Appendix. 

 
Theorem 2:  If A(u) is differentiable on [0,∞) with A'(u) strictly positive, then x is distributed 
according to the density f(x) where   
 

      f(x) =  φ(w(x))  and    g(w) =  φ(w) / A'(w). 
 

Theorem 2 can be applied to derive a very general density class for performance related to squared 
distance type error measures.  The set {x: (x-µ)' Σ−1 (x-µ) ≤ u} has volume, A(u), given by A(u) =   αn 
|Σ|1/2 u n/2  where αn = πn/2

  / n/2 Γ(n/2),  (Fleming, 1977), so that A/(u) = n/2 αn |Σ|1/2 u n/2 - 1 .  The 
gamma(α,β) density is given by   

 
                   g(u) = (Γ(α)βα)-1 uα-1 exp{- u2/β}.                                    
 
Therefore Theorem 2 implies that if w(x) = (x-µ)/Σ−1(x-µ) and g(u) = gamma (α,β), then the 
corresponding  f(x), which we now rename as ψ (x) = ψ (x;n,a,β)  is given by   

                                                                                                                                                      

ψ(x)= Γ(n/2)(πn/2Γ(α)βα)-1[(x-µ)′Σ -1(x-µ)]α-n/2
exp{ -1/β (x-µ)' Σ-1(x-µ)}      (4.1)  

 
For this density class we have the following observations: 



 

 - 9 - 

 
(i) If α  = n/2 and β=2 then ψ(x) is the multivariate normal density, N(µ,Σ).  
(ii) If α  = n/2 and β ≠ 2 then ψ(x) is steeper or flatter than N(µ,Σ) according to whether  β < 2 or   
β>2, respectively.  We call these densities the normal-like densities.   
(iii) If α < n/2 then ψ(x) is unbounded at its mode, µ, but may be more or less steep according to the 
value of β.  We call this class the better-than-normal-like density class. 
(iv) If α > n/2 then ψ(x) has zero density at the target ,  µ, and low values throughout  neighborhoods 
of  µ.  This suggests that attempts at the target are not effective.  The data may have arisen in pursuit of 
a different target or simply not be effective for any target.  
For densities in category (iii) the unbounded mode concentrates more probability near the target and 
suggests a higher level of expertise than that evidenced by the finite-at-mode N(µ,Σ) class.  It seems 
reasonable to refer to α in this context as the expertise, mode, or target effectiveness parameter; while 
β is a scale or precision parameter.  Thus if α ≤ n/2 we call ψ(x) the normal-like-or-better performance 
density.  To summarize, if attempts at a target set in nℜ  have a basic squared distance error measure 
and this measure is distributed with the gamma(α,β) density with α ≤ n/2 then the performance with 
respect to this target set is normal-like-or-better (NLOB).   
We extend this target effectiveness criterion to the present context as follows.  The target set is 
{ Y∈ 4ℜ : Σar Yr=1, Yr ≥ 0 for all r}.  If ΣarYrj = vj then the distance of Yrj from the target set is  (1-v) 
║a║-1.  Since 0 ≤ v ≤ 1 we employ the transformation w =(-ln v)2  = (ln v )2.   This transformation has 
the properties that w ≅  (1-v)2  near v=1  and  w∈ [0,∞).  Therefore w/║a║2 = (ln v)2/║a║2  is an 
approximate squared distance measure near the target set.  Since the ║a║2 term is a scale factor it can 
be absorbed into the β parameter of gamma(α,β).  We therefore consider the NLOB effectiveness 
criterion to hold if w has the gamma(α,β) density with α ≤  4/2=2.   That is, such performance is 
analogous to that of unbiased normal-like-or-better distributed attempts at a target in nℜ .  
There is one additional consideration before applying this effectiveness criterion to the present data.  In 
the LP estimation model MPE at least one efficiency, vj, must be unity (and hence wj = 0).  This is 
because at least one constraint (2.6) must be active in an optimal solution of the MPE model.  We 
therefore consider the model for the wj to be  

 
   p δ(0) + (1-p)  gamma(α,β),                                             (4.2) 

 
where p is the frequency of zero values (here p = 3/62 = 0.048 from Table 1), and  δ(0) is the 
degenerate density concentrated at  w = 0.  We call this the gamma-plus-zero density, gamma(α,β)+0 . 
For this data we regard the NLOB criterion to hold if it holds for the gamma density in (4.2).   When 
the gamma(α,β) density is fitted  to the strictly positive  w  values then NLOB requires that  α ≤ 2.  For 
the data of wj = (ln vj)2 based on Table 1, column 7, the parameter value estimates obtained by the 
Method of  Moments (see, for example, Bickell & Doksum, 1977) are α = 1.07 and  β = 0.32.  This 
method was chosen because the BESTFIT  software experienced difficulty in convergence using its 
default Maximum Likelihood Estimation procedure.  The Method of Moments estimates parameters by 
setting theoretical moments equal to sample moments.  For the gamma(α,β) density, µ = αβ, and σ2 = 
αβ2.  If w  and s2 are the sample mean and variance of the positive wj values, then the α and β 
estimates are given by 
 

   α̂  = w 2/s2    and β̂  = s2/ w . 
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Tests of fit of the wj data to the gamma (α = 1.07, β = 0.32) density were carried out using the software 
BestFit   (1995).  All three tests provided in BestFit  , the Chi-square, Kolmogorov-Smirnov, and 
the Anderson-Darling indicated acceptance of the gamma model with confidence levels greater than 
0.95.  In addition, for each of these tests, the gamma model was judged best fitting (rank one) among 
the densities in the library of BestFit  . We therefore conclude that the NLOB condition is met.  Use 
of the NLOB criterion in this way may be regarded as somewhat stringent in that the zero data are only 
used to define the target and are not used to assess NLOB target effectiveness.   
The NLOB criterion is important in establishing whether the estimated cost model is a plausible goal 
of the units being studied.  The MPE model will produce estimates for any arbitrary set of Yrj data.  
However, if the resulting vj data were, for example, uniformly distributed on [0,1], there would be little 
confidence in the estimated model. 
 
LIMITATIONS 

 
Limitations may be discussed for both the new estimation technique itself and for its application to the 
present context and data.  In order to more fully parallel existing OLS theory for model aptness testing, 
attention should be given to potential outliers, independence of the vj, and constancy of the distribution 
of the vj from trial to trial (analogous to homoscedasticity in OLS theory, see, for example, Madansky, 
1988, and Neter et al., 1985).  Theory developments for these issues are not yet available for the MPE 
model. 
Hypothesis tests and confidence intervals for the estimates do not appear to be readily derivable from 
the proposed approach.  However information on their variances can be obtained by simulation using 
additional specific assumptions.  As an illustration 100 data sets of 62 observations each were 
simulated as follows.  A value of vj was generated using the density model (4.2) and the estimates of p, 
α, and β.  Then a vector, Yrj, was generated according to the uniform distribution on the convex 
polytope { Y:∑

r
ar*Yr = vj, Yr ≥ 0} where ar* is given by (3.4).  Then the MPE model, (2.3)—(2.5) 

was solved for each data set and descriptive statistics for the estimates were obtained.  Additional 
details on the simulation steps are given in the Appendix.  The results are shown in Table 3. 

---------------------------- 
Table 3 About Here 
---------------------------- 

 
The proposed NLOB criterion is a strong standard for performance effectiveness.  It requires that 
squared distance performance with respect to the target set be as good or better than that of unbiased 
multivariate normal-like performance with respect of a point target in nℜ .  A still weaker class of 
target effectiveness densities might be developed in further research by inclusion of a vector parameter 
corresponding to possible bias in the multivariate normal-like model. 
With regard to limitations of the methodology for the application setting and data used here we discuss 
first the cost of unused capacity connection again.  A cost of unused capacity in the Cooper and Kaplan 
sense, which can be denoted as sj

ck, might co-exist along with a cost of inefficiency, sj
I as used in the 

present chapter; so that sj = sj
ck + sj

I.  The effect of such unused capacities, as distinct from costs of 
inefficiencies, on the present results would be to understate the true efficiencies.   The approach taken 
with the MPE model is worst-case in the sense that when the sj

ck are identifiable the appropriate data 
adjustment would be xj' = xj - sj

ck and the average performance efficiency would be expected to be 
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larger. TDF also discuss what we have called comparability of these units.  A concern was noted 
relative to activity four whose monetary driver level might have been affected by the prosperity of the 
community being served.  That is, offices with above average community prosperity and 
corresponding activity four levels might be considered as being unfairly compared to the others.  Other 
things being equal, units with an inappropriately inflated value of a driver level would be expected to 
exert heavy downward pressure on the corresponding estimate in model MPE.  We believe this kind of 
incomparability should ideally be removed by some kind of normalization process such as division by 
a socio-economic index.  For the sake of concentrating on essential features of the present technique 
and maintaining comparability with the results of DT we leave this level of detailed analysis beyond 
the scope of the chapter.   
In the use of the NLOB criterion for this data the α parameter was compared to n/2 when n=4 was 
chosen.  This assumes that the Yr data are truly four-dimensional.  The discussion of the data in TDF 
suggested to us that units were free to emphasize or vary all four drivers with the possible exception of 
the fourth one.  If this driver is regarded as not available for improvement by the units, then the data 
should be considered as three-dimensional.  In this case the intended α would be compared with 1.5.  
Since α̂  =1.07 the NLOB criterion is still met by the data under this assumption. 

 
EXTENSIONS TO OTHER BASIC COST MODELS 

 
This section discusses extensions to the three cases: (i) time-series data, (ii) marginal cost oriented 
basic cost models, and (iii) single driver-single cost pool data.  

 
Time-Series Data 
Suppose the data Yrt are given over time periods indexed by t for a single business unit.  Then the MPE 
model with index j replaced by t can be applied.  First, it would be necessary to adjust all the xt cost 
pool figures, and resulting Yrt data to reflect current dollars using a cost index.  This assumes that the 
estimated ar* cost rates are in terms of current dollars.  Next, these rates would be interpretable as 
follows.  The estimated ar* in the current dollar time series case may be interpreted to be the cost rate 
vector achieved by the unit during its most efficient observation period or periods.  The resulting vt 
suggest periods of more or less efficiency, and would be a useful source for self-study aimed at 
productivity and process improvements. 
The comparability issue for the units under comparison should be easier to accept in this case.  
However process or technology changes during the data time span could be problematical.  A more 
complete discussion of limitations for this case is left for specific future applications. 
In addition to the NLOB effectiveness test, additional considerations can be brought to bear with 
respect to an improvement over time dimension.  Effectiveness in this respect would be supported by 
establishing a significant fit of the vt data to a monotone increasing function of time, for example, the 
reciprocal of a learning curve.  Over longer periods of times, learning curve patterns for the estimated 
gamma parameters could serve similarly.  That is, decreasing α indicates improving target 
effectiveness, while decreasing β would indicate improving precision. 
 
Marginal Cost Oriented Basic Cost Models 
Both the time series and cross-sectional versions of the MPE model can be adapted to nonlinear basic 
cost models with marginal cost features.  For example, consider the original cross-sectional case, but 
using the basic cost model 
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                                         Σr ar yrj  + Σr br yrj
2 +sj =xj                                    (6.1) 

     
Again s is interpreted as a possible inefficiency due to experiencing higher than benchmark ar and/or br 
values.  The cost of service provided by activity r is ar* yr  + br* yr

2 for efficient units.  By 
differentiation, the marginal cost by this model for activity r becomes ar* + 2br*yr at the observed 
driver level.  Defining new data elements Yrj

(2) = y2
rj

 /xj , the modified MPE model becomes  
 
MMPE:      max  ∑ ∑    arYrj + br Yrj

(2)       (6.2) 
 

s.t.   ∑ ar Yrj + br Yrj
(2) ≤ 1 for all j     (6.3) 

                ∑ ar Yr  + br Yrj
(2) ≥ 0 for all j     (6.4) 

                   ar ≥ 0, for all j ,and  br unrestricted                      (6.5)           
 
The constraints (6.4) ensure that cost contributions can only be nonnegative even if some br is 
negative. In that case the marginal rate is decreasing; while if these coefficients are positive the 
corresponding marginal rates are increasing. Here a quadratic basic cost model was used. More 
generally, other models with different marginal cost structures could be employed (e.g. Cobb-Douglas 
as in Noreen & Soderstrom, 1994). 

 
 

Implications for the Single Driver - Single Cost Pool Case 
The MPE model for this case simplifies to max ∑ a Yj , s.t. a Yj ≤ 1, for all j, and a ≥ 0. The solution of 
this model is clearly a* = min Yj

-1  = min xj/yj. The NLOB criterion requires α* ≤ ½ in this case. If this 
condition fails to hold then this minimum value may be unreasonably low, perhaps due to an outlier.  
Deletion of one or a few such tentative outliers would be well supported if the remaining data do, in 
fact, pass the NLOB test. Otherwise no credible ar estimate is forthcoming from the present method. It 
should be noted that the simulation method could also be employed for this case, provided the NLOP 
criterion is met. 
 
DATA MINING APPLICATIONS AND CONSIDERATIONS 
 
Benchmark estimation models, such as that considered here, may also be called frontier regression 
models.  The general application of these in data mining has been discussed in Troutt et al. (2001).  
They are formed to explain boundary, frontier or optimal behavior rather than average behavior as, for 
example, in ordinary regression models.  Such a model may also be called a ceiling model if it lays 
above all the observations or a floor model in the opposite case. The cost estimation model of this 
chapter is a floor model since it predicts the best, in this case, lowest, cost units. 
The model considered here is a cross-sectional one. Although data mining is ordinarily thought of from 
the perspective of mining data from within a single organization, benchmarking type studies must 
often involve comparisons of data across organizations. Benchmarking partnerships have been formed 
for this purpose as discussed in Troutt et al. (2000).  Such benchmarking oriented data mining might be 
extended in a number of directions. Potential applications include comparisons on quality and other 
costs, processing and set-up times and employee turnover.  More generally, benchmarking 
comparisons could extend to virtually any measure of common interest across firms or other entities 
such as universities, states and municipalities.  In the example of this chapter, a simple cost model was 
used to explain best practice performance.  More generally, best practice performance may depend on 
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other explanatory variables or categories of interest to the firm.  Discovery of such models, variables 
and categories might be regarded as the essence of data mining.  With techniques discussed here, the 
difference is the prediction of frontier rather than average performance. For example, interest often 
centers on best instances such as customers most responsive to mailings, or safest drivers, etc. 
However, cross-sectional applications of benchmark performance models do not necessarily depend on 
the multiple firm situations.  Mining across all a firm’s customers can be of interest.  Consider a 
planned mail solicitation of a sales firm. For mailings of a given type, it is desirable to predict the set 
of most responsive customers so that these can be targeted.  Similarly, a charitable organization may be 
interested in discovering how to characterize its best or worst supporters according to a model.  
 As noted above, under the topic of times series data, such frontier models can be used within a single 
organization where the benchmarking becomes across time periods.  Models of this type might be used 
to mine for explanatory variables or conditions that account for best or worst performance periods. 
Some of the same subjects as noted above for cross-sectional studies may be worthwhile targets.  For 
example, it would be of interest for quality assurance to determine the correlates of best and worst 
defect production rates. 
Ordinary regression is one of the most important tools for data mining.  Frontier models, such as 
considered here, may be desirable alternatives in connection with data mining applications. This is 
especially the case when it is desired to characterize and model the best and/or worst cases in the data. 
Such data are typically of the managed kind.  In general, such managed data or data from purposeful or 
goal directed behavior will be amenable to frontier modeling. 
 
CONCLUSIONS 
 
This chapter proposes a method for estimating what may be called benchmark, or best practice unit and 
marginal cost rates.  These rates provide plausible operational goals for the management of the units 
being compared.  This method also provides efficiency measures and suggests which organizational 
units or time periods are more or less efficient, as well as an estimate of the degree of such 
inefficiency.  Efficient units or time periods provide benchmarks for imitation by other units or can be 
studied for continuous improvement possibilities. So far as the authors can determine, the proposed 
methodology is the first technique with the capability to suggest plausible benchmark cost rates. 
A principle of maximum performance efficiency (MPE) was proposed as a generalization of the 
maximum decisional efficiency estimation principle in Troutt (1995).  This principle is more broadly 
applicable than the MDE principle.  Also a gamma distribution-based validation criterion was 
proposed for the new MPE principle.  The earlier MDE principle appealed to the maximum likelihood 
estimation principle for model aptness validation, but required relatively inflexible density models for 
the fitted efficiency scores. 
The estimation models derived here reduce to straightforward linear programming models and are 
therefore widely accessible.  A case was made that an optimal cost rate estimate of zero for some 
activity may be indicative of generally poor efficiency across the units with respect to one or more 
activities.  Modifications based on reduced costs and augmented objective functions were proposed to 
compensate in that case. 
In these models the unknown cost rate parameters resemble the coefficients of linear regression 
models.  However, the maximum performance efficiency estimation principle is employed rather than 
a criterion such as ordinary least squares.  This principle assumes that for each organizational unit and 
time period the unit intends to minimize these costs.  Model adequacy with respect to this assumption 
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was judged by a test of normal-like-or better performance effectiveness for the estimated efficiency 
scores. 
These results are also consistent with Noreen & Soderstrom (1994) who found that costs were not 
generally proportional to activity levels in a cross-sectional study of hospital accounts.  The results of 
this chapter suggest that one source of such nonproportionality, in addition to the possibly nonlinear 
form of the basic cost model, is what we call performance inefficiency. 
The proposed estimation criterion was applied to a published data set previously analyzed by a 
modified data envelopment analysis method.  The resulting estimates were compared with the average 
costs obtained by the previous method.  The estimated benchmark cost rates were uniformly and 
strictly lower than their average rate counterparts consistent with their definitions and providing a 
strong measure of face validity. 
Benchmarking estimation models, such as discussed here, provide a new tool for data mining when the 
emphasis is on modeling the best performers. 
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APPENDIX 
 
 
Proof of Theorem 1:  
 
(i) Consider the potentially feasible solution 0

r
0 akm ==  for all r.  Then, ∑∑ ≤= r rjrj

0
r 1)(YkYa if k ≤ 

(ΣYrj)-1 for all j. 
               
Thus the solution 0

r
0 akm == is feasible for problem MPE (λ) for all λ > 0, for k0= min (Σyrj)-1 which 

is positive due to the positivity of the data. It follows that.  
 

z(λ*) ≥ ∑∑ +
j r

rjr Ya 0 λ m0  =  k0 Σ ΣYrj + λ k0   ≥  k0 λ, for all λ > 0. 

 

(ii) Here we note that the ar* (λ) for the MMPE model while feasible, are not necessarily optimal for 
the original MPE model. Hence use of these values in the MPE objective function will generally give a 
lower objective function value. 

 
Proof of Theorem 2: This is a modification of a proof for a version of the theorem given in Troutt 
(1993). By the assumption that x is uniformly distributed on {x:w(x) = u}, f(x) must be constant on 
these contours; so that f(x) = ϕ(w(x)) for some function, ϕ(⋅) . Consider the probability P( u ≤ w(x) ≤ u 
+ ε ) for a small positive number, ε. On the one hand this probability is ε g(u) to a first order 
approximation. On the other hand it is also given by 
 

∫…∫ f(x) Π dxi  ≅   ϕ(u) ∫…∫ Π dxi                                     
{x:u≤w(x)≤u+ε}        {w:u≤w≤u+ε} 

 
 

≅  ϕ(u) { A(u + ε) - A(u)} 
 
 
Therefore  
                 
ε g(u) ≅  ϕ(u) { A(u + ε) - A(u) } 
 
Division by ε and passage to the limit as ε → 0 yields the result.  
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Further Details on the Simulation Experiment 
 
  
To simulate observations within each data set, a uniform random number was used to choose between 
the degenerate and continuous portions in the density model 

 
p δ(0) + (1-p) gamma(α,β) 

 
where p =0.048, α=1.07, and β=0.32. With probability p, δ(0) was chosen and w=0 was returned. With 
probability 1-p, the gamma (α,β) density was chosen and a value, w, was returned using the procedure 
of Schmeiser and Lal (1980) in the IMSL routine RNGAM. The returned w was converted to an 
efficiency score, v, according to v=exp{-w0.5}. For each v, a vector Y was generated on the convex 
polytope with extreme points e1=(v/a1*,0,0,0), e2=(0,v/a2*,0,0), e3=(0,0,v/a3*,0) and e4=(0,0,0,v/a4* ) 
using the method given in Devroye (1986). 
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Table 1: British Rates Departments Data Based on Dyson and Thanassoulis (1988).  
Efficiency Rating Based on Model MDE-2 With Preemptive Positive Weights Modifications 

    Non-cnl Rate Summons NPV of Efficiency 
  Rates  Total Heredita- rebts & d’ress non-cnl Rating 
Department Costs ments grtd wrnts rates   
Lewisham 9.13 7.53 34.11 21.96 3.84 0.7881 
Brent 13.60 8.30 23.27 35.97 8.63 0.6920 
Stockport 5.76 10.91 13.39 11.53 4.93 1.0000 
Bradford 11.24 16.62 36.82 27.55 9.52 1.0000 
Leeds 15.57 22.81 95.78 23.61 12.27 1.0000 
City of London 5.65 1.78 0.16 1.31 39.01 0.9641 
Liverpool 21.60 15.11 70.96 54.22 10.81 0.7577 
Walsall 8.57 7.92 48.69 14.03 5.92 0.8361 
Rotherham 6.01 7.07 36.30 5.45 2.94 0.7926 
Wakefield 8.02 8.86 43.61 13.77 4.27 0.8631 
Lambeth 9.93 9.00 36.85 20.66 8.15 0.8122 
Sunderland 7.90 8.28 45.22 6.19 5.33 0.7492 
Solihull 5.15 6.76 18.70 10.62 3.54 0.8958 
Redbridge 6.42 8.98 13.60 12.32 3.75 0.8110 
Calderdale 5.94 7.69 25.91 8.24 2.48 0.7994 
Haringey 8.68 7.23 16.97 17.58 6.27 0.6864 
Barking &Dagenham 4.86 3.36 23.67 4.30 2.48 0.6076 
Newcastle-upon-Tyne 10.33 8.56 30.54 17.77 8.01 0.6985 
Manchester 21.97 12.23 92.02 29.53 14.76 0.6230 
Wolverhampton 9.70 7.67 41.16 13.27 4.50 0.6649 
Trafford 6.34 8.17 16.61 8.26 5.05 0.7466 
Tameside 7.70 7.88 15.75 14.50 3.03 0.6808 
St Helens 5.99 5.67 27.55 5.24 3.41 0.5188 
Sutton 5.20 6.92 12.61 4.30 3.04 0.6556 
Rochdale 6.36 7.35 23.51 5.74 4.21 0.8471 
Barnsley 8.87 6.46 38.10 9.65 3.09 0.5974 
Kirklees 10.71 13.64 23.86 14.63 4.63 0.6876 
Oldham 6.49 7.68 17.97 8.27 2.76 0.6766 
Sheffield 15.32 15.34 55.42 16.36 12.53 0.6905 
Havering 7.00 8.37 14.92 9.88 4.33 0.6915 
Dudley 10.50 9.61 37.91 13.49 5.04 0.6563 
Sefton 10.88 10.65 36.96 14.25 4.84 0.6617 
Bexley 8.52 8.97 24.67 11.84 3.75 0.6669 
Gateshead 7.61 6.11 31.73 7.66 2.87 0.6031 
Wigan 10.91 9.78 42.73 12.17 4.66 0.6363 
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Kensington & Chelsea 9.72 7.71 5.90 14.60 9.25 0.5646 
Coventry 12.63 11.08 41.59 16.42 5.65 0.6289 
Sandwell 11.51 9.07 28.49 16.28 5.96 0.5898 
Bury 6.22 6.63 14.67 7.70 3.08 0.6294 
South Tyneside 5.29 3.96 20.42 1.96 1.84 0.4808 
Salford 8.78 6.56 31.72 8.60 4.83 0.5783 
Hackney 13.50 4.77 26.47 20.88 4.17 0.4434 
Camden 12.60 6.68 30.28 9.09 19.45 0.5478 
Hillingdon 8.10 8.10 9.71 8.53 7.50 0.5821 
Tower Hamlets 9.67 6.00 19.46 10.71 8.03 0.5187 
Barnet 12.37 11.25 28.50 12.53 6.74 0.5604 
Bolton 9.50 8.67 23.54 8.99 3.66 0.5411 
Ealing 11.47 10.30 15.58 13.74 6.46 0.5388 
Bromley 11.78 12.22 14.33 10.10 5.02 0.5039 
Wandsworth 12.57 10.43 18.31 16.39 3.92 0.5098 
Birmingham 50.26 32.33 150.00 45.10 19.58 0.3565 
Enfield 12.70 9.50 22.39 14.90 5.80 0.5030 
Southwark 13.30 7.53 21.99 14.66 8.32 0.4608 
Knowsley 5.60 3.73 12.21 5.39 2.84 0.4786 
Islington 11.75 5.20 13.28 13.62 7.10 0.4079 
North Tyneside 8.47 6.15 19.45 6.51 3.30 0.4587 
Kingston-upon-Thames 8.36 5.96 17.11 4.66 3.08 0.4107 
Hounslow 11.07 7.25 16.34 8.69 6.62 0.4274 
Richmond-upon-Thames 10.38 7.76 16.44 6.01 3.31 0.3941 
Hammersmith & Fulham 11.83 5.35 12.41 12.24 4.57 0.3622 
Newham 12.71 6.32 13.63 8.53 5.16 0.3268 
Merton 11.19 6.58 10.90 3.52 3.46 0.2839 
Mean 10.45 8.81 29.41 13.33 6.41 0.6314 
Standard Deviation 6.21 4.50 23.54 9.38 5.57 0.1699 
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Table 2: Descriptive Statistics for the Derived Data, Yr 

Variable Y1 Y2 Y3 Y4 
Mean 0.8948 2.8492 1.2622 0.6665
Standard Deviation 0.3013 1.3959 0.5290 0.8320
 
 
Table 3: Descriptive Statistics Estimated from 100 Simulated Data Sets 

Estimate a*
1 a*

2 a*
3 a*

4 
Mean 0.2687 0.0510 0.1446 0.1412
Standard Deviation 0.0625 0.0131 0.0314 0.0297
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