
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

An application of agent-based simulation to knowledge sharing

Jing Wang a, Kholekile Gwebu a, Murali Shanker b, Marvin D. Troutt b,⁎
a Decision Sciences Department, Whittemore School of Business and Economics, University of New Hampshire, United States
b Department of Management & Information Systems, College of Business, Kent State University, United States

a b s t r a c ta r t i c l e i n f o

Article history:
Received 31 July 2006
Received in revised form 12 September 2008
Accepted 28 September 2008
Available online 12 October 2008

Keywords:
Agent-based modelling
Simulation
Knowledge sharing
Complex adaptive systems

This paper explores knowledge sharing using an agent-based simulation model. Built using Repast, our
application allows managers to simulate employee knowledge-sharing behaviors by making parametric
assumptions on employee decision strategies and organizational interventions that affect identifiability,
benefits, and costs. Our results show that in the presence of non-linear and adaptive interaction, unintended
and unpredictable outcomes might occur, and that knowledge sharing results from the complex interaction
between employee behavior and organizational interventions.
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1. Introduction

Knowledge constitutes a key strategic resource for firms [23,33,48],
and companies invest heavily to facilitate the exchange of knowledge
among employees. However, organizations often face difficultieswhen
trying to encourage knowledge-sharing behaviors [9,12]. This raises
the issue of how organizations can effectively encourage individual
knowledge-sharing behavior.

Many systems in the business domain fall into the category of a
complex adaptive system. Complex Adaptive Systems (CAS) are defined
as dynamic systems consisting of a network of interacting actors like
humans, processes, etc., that adapt to constantly changing environ-
ments [29]. For example, many economic systems are complex be-
cause 1) they are made of a network of interacting actors (humans,
processes, environment, etc.) and 2) they reveal dynamic, collective
behavior that emerges from the individual actors' activities. These
systems are also adaptive because they contain actors who achieve
their goals by adapting to the environment over time [29].

Similarly, examining the effect of a firm's objectives and individual
employee actions on organizational knowledge sharing is a complex
system. By considering individual employees (actors) and their
interactions, knowledge sharing emerges not only from the interplay
between the intervention (contextual environment) and the employ-
ees, but also from the complex interactions among individual em-
ployees who hold that knowledge. Conceptualizing organizational
knowledge sharing as a complex adaptive system has important
implications for managers and researchers alike. It suggests that the
essence of knowledge sharing is not just what organizations plan, but

also what individuals do. This perspective challenges the traditional
management approach of planning and control, and acknowledges
that sharing knowledge involves activities that can neither be
supervised nor forced on people [35], and that the availability of
sophisticated technologies does not guarantee success in knowledge
management initiatives [9].

One problem with modeling complex adaptive systems such as
knowledge sharing is that non-linear and adaptive interactions in
these systems are often too complex to be captured by traditional
analytical techniques [29,4]. Many conventional models are also
limited in their ability to capture cross-level impacts. Currently, two-
by-two game settings dominate the modeling of CAS as they allow
results by deduction [4], and they are tractable [44]. However, such
approaches make limiting assumptions on interdependencies, strate-
gies, and on the multiplicity of players, which contradict real-life
situations [44]. Further, game theory assumes rational choices or
optimization principles. In reality, individuals are adaptive, rather
than fully rational, and they lack the necessary behavioral sophistica-
tion to derive optimal solutions [29].

Recent advances in agent-based simulation offer new opportu-
nities to examine complex systems like organizational knowledge
sharing. With intelligent agents as its building blocks, an agent-based
simulation approach naturally accommodates such systems by
modeling actors and components as software agents. As a wide
range of computer-based algorithms can be adopted, interaction and
adaptive behavior can also be easily modeled.

In this paper, we use an agent-based simulation model to get a
better understanding of how employees' actions, and organizational
interventions that affect the costs of not sharing knowledge, the be-
nefits of sharing knowledge, and a firm's ability to determine whether
or not an employee has shared knowledge (identifiability), interact to
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influence organizational knowledge sharing. Our objective is two-
fold:We first build a simulationmodel to demonstrate the importance
and feasibility of using an agent-based simulation approach to model
knowledge sharing, and secondly, to demonstrate that the agent-
based approach and other techniques such as data mining can be
combined to develop potent management analysis tools to study
organizational knowledge sharing.

The remainder of this paper is structured as follows. The next
sectionprovides a brief overviewof organizational knowledge sharing,
and agent-based modeling. In the following section, we develop an
agent-based simulationmodel for knowledge sharing. This is followed
by the results section, which shows that knowledge sharing results
from the complex interaction between organizational objectives and
employee actions. The last section presents our conclusion.

2. Related research

2.1. Organizational knowledge sharing

Shared knowledge is a particular case of a public good [9], where
every user benefits from it, regardless of their contribution, and the
knowledge does not diminish with use [37,42]. But, individuals may
not contribute, particularly when there is little penalty for not
contributing. From an individual's perspective, it is rational to not
contribute. But, if all individuals act rationally and do not contribute,
the public good ceases to exist, and ultimately all individuals are
worse off. In other words, individual rationality leads to collective
irrationality, a dilemma that could arise in organizational knowledge
sharing.

Thus, if organizations are to benefit, it is important for them to
understand how different interventions affect knowledge sharing.
Some approaches include providing incentives for sharing knowledge,
and the use of knowledge management systems [24,18,16]. These
mechanisms affect knowledge sharing by impacting the benefits of
sharing and costs of not sharing. Favorable benefits for sharing, and
higher costs for not sharing, are likely to improve knowledge-sharing
behaviors [24,18,15]. As knowledge sharing comes with participation
costs, e.g., time, effort, power, andmoney, reducing these costs is likely
to encourage knowledge sharing behaviors [9]. Knowledge manage-
ment systems can be embedded seamlessly in employees' work flow
to reduce such costs. Finally, for incentives to work, organizations
must be able to identify between those who share and those who do
not share knowledge. When an individual's anonymity is preserved,
and no record of past interaction exists, there is a strong incentive for
them to not contribute, as they can benefit from knowledge shared by
others, but not be penalized for not contributing [4,37,5]. Therefore,
increasing identifiability and disseminating information about indivi-
duals' actions is another important intervention to facilitate knowledge
sharing. Conversely, an approach such as pay-for-performance may
discourage knowledge sharing among employees, as it reinforces the
belief that knowledge is valuable, and sharing it dilutes their
accomplishments [9,30].

Despite organizational interventions, knowledge sharing cannot
be forced onto people [27,9]. Researchers have realized that organiza-
tional knowledge sharing is a complex product of an individual's
behavior in a given organizational and social situation [9]. The premise
of knowledge sharing as the product of complex people-situation
interaction suggests that a complete understanding of organizational
knowledge sharing will necessarily involve not only individuals who
hold the knowledge, but also understanding organizational interven-
tions that facilitate knowledge sharing, and the way in which each of
these components interacts with the others. This complex and
interactive nature of knowledge sharing suggests that this phenom-
enon is a complex adaptive system [29].

The next section provides a brief review of agent-based simulation
and its advantages in modeling CAS.

2.2. Agent-based modeling and simulation for business problems

A software agent is a computer program that is situated in some
environment and is capable of autonomous action in this environment
in order to meet its design objectives [51]. Agents possess four distinct
characteristics [52]: Autonomy, which is the ability to operate without
direct human intervention, interactivity, the ability to interact, com-
municate, and cooperate with other agents, reactivity, the ability to
monitor and respond to changes in the environment in which they
reside, and, proactiveness, which is the ability to take initiatives when
necessary and exhibit goal-oriented or opportunistic behavior.

Agent-based modeling has become an increasingly attractive
methodology in modeling various social and natural complex systems
[4,43,17,45,14,50]. Several factors have contributed to the growing
popularity of such models. A few of them being:

• They allow researchers to model CAS in a straightforward manner.
Individual actors or components in real-world systems are modeled
as software agents. Instructions are defined for the behavior and
interaction of the individual actor of a particular real-world system.
No instructions are specified for the overall behavior of the studied
system. Instead, the overall behavior emerges as a result of the
interactions and actions of the individual agents representing the
actors in the real system [4,17].

• They retain much of the flexibility of linguistic modeling and the
consistency and precision of the mathematical modeling techniques
[29].

• They provide an alternative approach to model and incorporate a
wide range of computer-based adaptive algorithms and thereby,
provide a viable way to study systems with actors who are adaptive
rather than fully rational [29,4].

• They have the ability to produce emergent results [4,29,43]. In the
literature, emergent phenomena refer to outcomes arising at the
level of the aggregate system that may not be foreseen by examining
the elements of the system in isolation [43]. For example, when we
study the structure of market share of a product, software agents can
be constructed to model each individual customer's purchasing
behavior. It is not self-evident how market share of this product
would change by simply examining individual agents. However,
patterns might emerge at the system level by running the simu-
lation over a period of time.

In certain cases, analysis of the dynamic paths of the systemmay be
of vital relevance to decision makers. For instance, in the resource-
based view of the firm, firms differ in their resource endowments and
capabilities in important and durable ways, and this heterogeneity of
firm capabilities and resources affect their competitive advantage and
disadvantage [7,28]. If heterogeneity in firm resources and capabilities
is so crucial, decisionmakerswould probably be particularly interested
in the path of how firm heterogeneity arises and evolves over time.
Agent-based models can be used to analyze the path of the system
within any timeframe. When an agent-based model is executed in a
simulation, the unfolding behavior of the individual agents and the
aggregate system can also be observed over time. Elements such as
utility, risk aversion, available information, knowledge, and learning
can be carefully and easily controlled. Through successive runs of the
computer simulation, these elements can be reset to different values in
order to study variations in outcome. The strategies of each individual
agent and the resultant outcomes can be analyzed in great detail [29].
Parameter values can be manipulated to study how the path of the
system reacts in response to exogenous shocks [43].

Further, agent-based simulation provides several advantages over
other simulation architectures in modeling business problems. First, an
agent is autonomous, pro-active, adaptive, socially interactive, and
intelligently cooperative [32,34]. With agents as its building blocks, an
agent-based simulation system can therefore offer sophisticated
patterns of interaction [32] and additional automation and flexibility
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[2,49]. Secondly, a multi-agent system (MAS) is well suited particularly
for domains where multiple perspectives, goals, interactions or entities
(such as different people and organizations) are involved [32,49].
Different or even conflicting interests of parties can be modeled and
ensured by different agents in the MAS. Finally, because agents are
socially interactive, MAS are ideal for modeling fundamental problems
where interaction, interdependency, emergence, and conflicting inter-
ests are essential.

The next section presents an agent-based simulation model for
organizational knowledge sharing.

3. Model development

As discussed previously, both organizational interventions and
individual employee behaviors affect knowledge sharing. Organiza-
tional interventions provide incentives and penalties that affect the
benefits of sharing and costs of not sharing, respectively. To effectively
apply such interventions, organizations must also be able to identify
individuals who share or do not share knowledge. Thus, in our model,
we consider interventions that affect: 1) Identity Transparency, which
reflects the degree towhich organizations are successful in identifying
employees who share knowledge or not. Higher values indicate that
the organization is able to identify a greater proportion of such em-
ployees. 2) Benefits of sharing, which provide incentives for contribut-
ing knowledge and gains from shared knowledge and 3) Costs of not
sharing, which include interventions for not contributing knowledge
and costs in enforcing penalties on non-contributors.

Just as organizations adopt different interventions to improve
knowledge sharing, individuals may adopt different strategies to
decide if they will or will not share knowledge [29,4]. In other words,
these strategies determine the action, to share or to not share, for each
individual. The agent-based simulation model developed below then
examines the effect of both organization interventions and employee
strategies on knowledge sharing. While our primary objective here is
to examine how organizations can understand and increase knowl-
edge sharing, we do not necessarily examine all decision strategies or
organizational interventions that may influence such behavior. Here,
we restrict our attention to the above mentioned organizational in-
terventions, and decision strategies that are commonly mentioned in
the literature [4,9,29,37,24,18,5,46,6,40,19]. The next section presents
our model description.

3.1. Model description

Based on our discussions above, Table 1 summarizes the variables
affected by organizational interventions that we consider in our
model: identity transparency, benefits, and costs.

All individuals benefit from the knowledge shared by others, but
only those individuals who contribute knowledge and have their
identities known benefit from the incentives given by the organization
for knowledge sharing (Table 1). Individuals also incur costs. Those

who contribute knowledge spend time and effort in sharing knowl-
edge [9]. Prior work in social dilemmas indicates that those who
contribute tend to punish non-contributive behavior even if the
punishment is costly for them [37,19]. As such, contributors also incur
costs to enforce penalties on non-contributors. Non-contributors
benefit from the contribution of others, but incur costs for failing to
contribute, but only if their identities are known. In our model, we do
not assume complete transparency of players' identities. In fact,
ambiguity of player identity is one of the features that distinguish a
two-person game from an n-person public good dilemma. In a two-
person game, when one player defects, the other one knows who
defected. But, as the number of players increases in a game, it gets
easier to defect anonymously [37].

To fully understand knowledge sharing also requires consideration
of individuals who hold the knowledge. At each decision point, an
individual's problem is to choose an action, to contribute or not con-
tribute, based on the information available to him. Based on prior
research, Table 2 presents possible strategies employees may adopt
when choosing their knowledge sharing actions.

At eachdecisionpoint, individualsmust determinewhether or not to
contribute knowledge. Regardless of their own or other individuals' past
actions, individuals choosing the contribute and do not contribute
strategies always take the same action. That is, they either contribute,
or do not contribute knowledge, respectively. Individuals who use the
repeat last action strategy take the same action, either to contribute or
not contribute, that they did in their immediate previous decision.
Some decision strategies require information fromother individuals. For
example, themimic majority strategy requires knowledge of the actions
of other individuals in the organization. As an individual's identity may
not be known, this strategy reflects the perceivedmajority decision. That
is, the action supported by the majority of known individuals.

While rational individuals seek to optimize gain, most of them lack
the necessary skills, knowledge, and information to do so [29,4].
Hence, here we offer a mimic winners strategy, where agents learn
from the winners to determine which action yields better benefits,
and a learn from past strategy, where agent learn from their own
experience to determine which action yields better benefits (Table 2).
Clearly, not all individuals act rationally. Some adopt a herd mentality
(mimic majority strategy in Table 2) and imitate the decisions of
individuals around them [23,35,4]. A single individual may also
change strategies over time, which may result in different actions. In
our model, agents follow a non-persistent strategy. That is, at each
decision point, agents are randomly assigned with one decision
strategy from the possible strategies in Table 2.

The learn from the past and mimic winners strategies require
calculating an individual's net benefit. All individuals benefit from
shared knowledge (Table 1). If individual K is a non-contributor, then
this shared-knowledge benefit is derived from the contribution of all
contributors. But, if individual K is a contributor, then this shared-
knowledge benefit is derived only from the contribution of other
individual contributors. If their identities are known, contributors also

Table 1
Benefits and costs structure

Person (C) Identity
(I)

Benefits Costs

Benefits
from
shared
knowledge
(R)

Incentives
for
contributing
knowledge
(S)

Penalty
for not
contributing
(Q)

Costs for sharing
knowledge and
enforcing
penalties on
non-contributors
(P)

Contributor Known Yes Yes No Yes
Not known Yes No No Yes

Non-contributor Known Yes No Yes No
Not known Yes No No No

Note: Variable names are in parentheses.

Table 2
Individual decision strategies on whether to contribute or not contribute

Strategy Description

Contribute Individuals share their knowledge regardless of their own or
other individuals' previous actions

Do not contribute Individuals do not share their knowledge regardless of their
own or other individuals' previous actions

Repeat last action Individuals choose the same action that they did previously
Mimic majority Individuals imitate the actions used by the perceived

majority of individuals
Learn from the past Individuals compare their last two actions, and choose the

one that led to a higher net benefit
Mimic winners A strategy designed to imitate individuals who try to maximize

their payoff. It uses data collected from all known agents in
determining the best payoff
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benefit from the incentive S given by the organization. Costs for
contributors arise from the time and effort required to share know-
ledge and to penalize non-contributors, while the costs for known
non-contributors is the penalty enforced by the contributors and the
organization. Individuals using the learn from the past strategy
compare their net benefit for the last two decision points, and use the
decision that led to the higher net benefit. For example, let individual
i's decisions at point t−1 and t result in a net payoff of Bt−1 and Bt,
respectively. At decision point t+1, using the learn from the past
strategy, individual i will choose the same decision as at time t if
Bt≥Bt −1. Otherwise, individual i will choose the decision made at t−1.

For the benefits and costs structure of our model (Table 1), the net
benefit BK for individual K can therefore be expressed as follows:

Bk = Benefit − Cost

=
R×∑

i;i≠K
Ci + S×IK

� �
−P if individualK is a contributor

R×∑
i;i≠K

Ci

� �
− Q×IKð Þ if individualK is a non� contributor

;

8>><
>>:

ð1Þ

where

R Benefit derived from an individual's shared knowledge
S Incentive given by the organization for sharing knowledge

Ci
1 if individual i is a contributor
0 otherwise

�

P Cost for an individual contributor to share knowledge and
enforce penalties on non-contributors

Q Cost incurred by a non-contributor for not sharing knowledge

Ii
1 if identity of individual i is known
0 otherwise

:

�

Themimic winners strategy involves calculating net benefits for all
agents whose identities are known. Tomake the next decision, we first
identify all known agents. The net payoff for each known agent is then
calculated using Eq. (1). We then determine the average net benefit B

–1

for all agents who are contributors, and B
–0 for all agents who are non-

contributors, respectively. Using the mimic winners strategy, an
individual's action would be to contribute if B

–1≥B–0, otherwise it is to
not contribute. As we do not require complete identity transparency in
our model, the average benefit can only be determined for agents
whose identities are known.

Our model allows the flexibility to include other organizational-
specific interventions and decision strategies. Here, we restrict our
implementation to the ones mentioned above. The next section pre-
sents the simulation model.

3.2. The simulation model

The Recursive Porous Agent Simulation Toolkit (Repast) is an open
source modeling framework that permits researchers to create
agent-based simulations [41]. Although Repast was originally de-
veloped to simulate social behavior, it has been successfully em-
ployed by a myriad of researchers in fields as diverse as political
science [13], archeology [11], biology [3], economics [8] and finance
[10] just to name a few. The popularity of Repast may be attributed
to its vast library of objects that provide researchers in different
fields the flexibility to create sophisticated models then run and
display the results of agent-based simulations. Repast is well suited
for social networks and interactions, and is used to build our model.
Fig. 1 shows a representative graphical user interface (GUI) of our
application.

Fig. 1. Parameter inputs.
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Fig. 1 shows the user interface for specifying the initial conditions
of the simulation, which include the number of employees in the
organization, and the initial percentage of individuals in the organi-
zation who start out as non-contributors. The run time conditions of
the simulation can be specified by clicking on the drop down menu
Run. By clicking on the Strategy Mix in Fig. 1, a different GUI is pre-
sented to specify the strategymix that we outlined in Table 2. A similar
GUI allows the user to specify the organizational interventions of
identity transparency, benefits, and costs of Table 1.

4. Simulation experiment

A simulation experiment was designed to understand the long-term
effect on knowledge sharing of three categories of variables affected by
organizational interventions (Table 1) and sixdecision strategies (Table 2).

Before a simulation can be executed, it is important to verify and
validate the model. Verification ensures that the simulation model is
correctly coded, and the program performs as intended [39]. Our
primary means of verification here is through tracing. Tracing is a type
of dynamic testing that involves getting all intermediate outputs from
a computer program automatically. This output is then comparedwith
results calculated manually by the analyst [36]. In our simulation
experiments, intermediate simulation outputs matched our manual
calculations, thus supporting the verification of our model.

Before any simulation model can be used in an organization, it
is important to validate the model for that organization. That is, it
is important to ensure that the model is an accurate representation of
the real-world system under study [39]. Here, it would require that we
collect data on the input parameters, i.e., the benefits and costs, and
also the decision strategies used by different groups of individuals in
the organization. The outputs of the simulation model can then be
validated with the actual observations from the organization.

As our primary objective here is to understand knowledge sharing
using agent-based simulation and not necessarily to validate it for a
particular organization, the input data in our simulation experiments
are artificially generated. But, we discuss validation of our simulation
results as part of our analysis in the following sections.

Our simulation experiment consisted of the following factors:

1. Initial conditions
a. Number of individuals (N)
b. Percentage of individuals who start out as non-contributors

2. Identity transparency (I)
3. Costs
a. Cost of sharing knowledge and enforcing penalties on non-

contributors (P)
b. Cost of not contributing (Q)

4. Benefits
a. Incentive given for contributing (S)
b. Benefit from contributed knowledge (R)

5. Decision strategy mix

Factors 1a and 1b specify the initial conditions of the simulation. For
this research, we consider a medium size organization and fix the value
ofN at 300. As we are interested in the long-run behavior of the system,
factor 1b only affects the convergence rate to long-termbehavior. As this
factor largely affects only the computational time required to initialize
initial conditions, without loss of generality, we fix this value at 50% for
all simulations. We then choose a conservative time to initialize initial
conditions. Factor 2 is the proportion of individuals whose identity is
known, and we consider this at two levels. Factors 3 and 4 define the
costs andbenefits thatwediscussed inTable 1.We considereachof these
factors at 2 levels, except for R, the benefit from contributed knowledge.
Initial experiments suggested that themodelwas sensitive to values ofR,
so we consider this factor at 6 levels. The values of other factors were so
chosen as to provide different ratios of benefits to costs in our model
(Table 3). The last factor, decision strategymix, itself consists of anumber
of variables that can be changed (Table 4). In our model, to assign a
strategymix, we group individuals into two categories, thosewhose net
payoff is currently non-negative, and thosewhose net payoff is negative.
We then assign a strategy mix for each group. For an organization, this
requires data collection on decision strategy mixes for each identified
group in the organization. Here,we only consider afixedmix for the two
identified groups in our model. The percentage of individuals in each
group who follow a specific strategy is shown in Table 4.

The values for repeat last action and learn from the past require
further mention. Individuals who currently have a negative net benefit
are unlikely to adopt as their current decision their immediate previous
decision that led to a negative net benefit. Such individuals are more
likely to look beyond their last decision, and choose the one that yielded
a higher payoff in their previous decisions. In other words, individuals
currently with a negative net benefit are more likely to use a learn from
the past strategy than repeat last action,which resulted in their negative
payoff. This is reflected in our strategymix in Table 4, though ourmodel
allows us the flexibility to consider other values. Thus, our simulation
experiment consists of 96 treatments. The complete set of factors and
their levels for our simulation is shown in Tables 3 and 4.

As we are interested in the long-run behavior of the system, we
needed to initialize initial-condition statistics during the simulation.
To facilitate this, our application generates three major outputs: 1) a
visual display of agents playing the game, 2) a report that tracks
variable values, and 3) a line chart that visually exhibits the trend (the
number of contributors and non-contributors) over time. To identify
initial conditions, we visually identified when the simulation appears
to reach steady state behavior, and then initialized statistical counters
at that time instant [39]. As steady state cannot be guaranteed for all
parameter values in our simulation, we use a conservative value for
initial conditions as part of the initialization of statistical counters.
Fig. 2 shows an example graph of the number of contributors and non-
contributors in our simulation. The vertical line indicates an approxi-
mate point at which statistical counters were initialized. Our simu-
lation experiment consisted of 96 treatments. For each treatment
combination, the simulation was run until the statistical counters

Table 3
Experimental factors

Factor Factor levels

Number of individuals (N) 300
Initial percentage of contributors 50%
Identity transparency (I) 50%

90%
Costs
Cost for sharing knowledge and enforcing penalties
on non contributors (P)

3
5

Cost for not contributing (Q) 2
4

Benefits
Incentive for contributing (S) 3

5
Benefit from contributed knowledge (R) 0

1
2
4
8
12

Table 4
Percentage mix of strategies for each group

Decision strategy Non-negative net benefit (%) Negative net benefit (%)

Contribute 1 1
Do not contribute 1 1
Repeat last action 32 0
Mimic majority 33 33
Learn from the past 0 33
Mimic winners 33 32
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were initialized for initial-conditions, and then the simulation con-
tinued until we had collected data over 1000 decision points. The
average value over these 1000 decision points represented one sample
point in our analysis. This procedurewas then independently repeated
10 times for each treatment combination. Thus, over the course of the
simulation, we collected a total of 960 independent samples. The
results in the following sections are based on these 960 sample values.

5. Results

Organizations are interested in understanding how different fac-
tors affect knowledge sharing. To facilitate this, our simulation model
provides detailed output that allows an organization to observe how
changes in input parameters affect knowledge sharing over time.

Here we concentrate on the outputs of the simulation. Table 5
presents the average proportion of non-contributors at each factor
level across the 960 independent samples. As this was a balanced
design, each factor level average, except for R, is calculated from
n=480 sample points. As there are six levels of R, factor level averages
are calculated from n=160 sample points. The total number of in-
dividuals was fixed at N=300.

Table 5 shows that when identity transparency was set at the 50%
level, 51.14% of the individuals were non-contributors. At the 90%
level, the percentage of non-contributors dropped to 47.71%. These
results agree with previous studies that show that increased identity
transparency produces smaller proportion of non-contributors
[1,25,26,38], though the magnitude of reduction here may not be as
large as expected. In our model, this is expected. The net benefit
objective function in Eq. (1) shows that only individuals whose
identity is known benefit from S the incentive given for contributing.
Thus, for contributors to benefit from this, their identity has to be
known, and we would expect that the larger the benefit, the greater
the proportion of contributors. This is clearly seen in Table 6A, which
shows the average proportion of non-contributors across identity
transparency. When S=3, and I=50%, 59.51% of all individuals are non
contributors, and for I=90%, 55.53% are non-contributors. Comparing
this for S=5, we have 42.76% and 39.88%, respectively, a significant
reduction. Thus, increasing the incentive S decreases the proportion of
non-contributors, and for a fixed S, the proportion of non-contributors
is lower when identity transparency is at 90% compared to 50%.

All contributors, regardless of their identity, incur a cost P to share
knowledge and to enforce penalties on non-contributors (Eq. (1)). We
would thus expect that as this cost increases, there will be fewer
contributors. This is seen clearly in Table 6C, which shows that when P
increases from 3 to 5, the proportion of non-contributors increases,
regardless of the identity transparency. When I=50%, increasing P
from 3 to 5, increases the proportion of non-contributors from 42.80%
to 59.47% (Table 6). When I=90%, this increase is from 39.86% to
55.54%. Table 6A also shows that either increasing the incentive S or
reducing the cost P, regardless of the identity transparency, reduces
the number of non-contributors. For example, when I=50%, S=3, and
P=5, a scenario with the smallest incentive for contributing and the
greatest cost for sharing knowledge, 70.98% of all agents are non-
contributors. Conversely, when the incentive is the greatest and the
cost the least, i.e., S=5 and P=3, only 37.55% of agents are non-
contributors. A similar reduction is seenwhen identity transparency is
at 90%. Here the proportion of non-contributors reduces from 67.09%
(S=3, P=5) to 35.76% (S=5, P=3).

Table 6B shows a similar pattern. Increasing Q the cost for not
contributing, or reducing P, regardless of the identity transparency,
produces fewer non-contributors. For example, when I=50%, P=5,
and Q=2, a situationwith the highest penalty and the least cost for not
contributing, 70.95% of all agents are non-contributors. But, when
P=3, and Q=4, only 37.51% are non-contributors. A similar result is
seen for I=90%. As both Q and S have similar effect on our objective
(Eq. (1)), one adds to the benefit, and the other to the cost, changing

Fig. 2. Identifying initial conditions.

Table 5
Average proportion of non-contributors; standard deviation in ()

Factor Factor levels

Identity transparency I=50% .5114 (.4260)
(F=7.38, p= .0067)1 I=90% .4771 (.4448)
Costs
Cost for sharing knowledge and enforcing
penalties on non-contributors

P=3 .4133 (.4303)

(F=164.27, pb .0001)1 P=5 .5751 (.4264)
Cost for not contributing Q=2 .5755 (.4262)
(F=165.89, pb .0001)1 Q=4 .4129 (.4305)

Benefits
Incentive for contributing S=3 .5752 (.4260)
(F=164.74, pb .0001)1 S=5 .4132 (.4304)
Benefit from contributed knowledge R=0 .0703 (.0816)
(F=661.65, pb .0001)2 R=1 .1623 (.3070)

R=2 .2375 (.2969)
R=4 .5820 (.3439)
R=8 .9557 (.0720)
R=12 .9574 (.0055)

Overall .4942 (.4358)

Notes:
1 — Factor level mean differences are statistically significant at the 0.05 level F statistic,
and p-values in ().
2 — All means are statistically less than the maximum value of 0.9574 at the 0.05 level,
except for R=8.
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either of the values produces a similar change in the proportion of
non-contributors. For example, when I=50% and P=3, changing S
from 3 to 5, reduces the proportion of non-contributors from 48.05%
to 37.55%. A similar change is noted when we change Q from 4 to 2.
These results provide further validation for our model, and support
existing studies, which show that the greater the personal return from
contribution and the lower the return from not contributing, the
higher the level of cooperation [12,37,31].

On average, 49.42% of all individuals were non-contributors
(Table 5). Clearly, the factor that produces the greatest increase in
the percentage of non-contributors is R, the shared benefit from
contributed knowledge (Table 5). There is a strong correlation of
0.7916 between R and the proportion of non-contributors, and
changing the value of R from 0 to 12 increases the proportion of
non-contributors from 7.03% to 95.74%. Although higher benefits from
shared knowledge yield higher payoffs for all, from an average payoff
of −1.75 when R=0 to 3592.25 when R=12, non-contributors
particularly benefit from this, as they receive all the benefits of shared
knowledge, but few of their costs (Eq. (1)). As such, non-contributors
experience higher benefits than contributors as R increases, thus
suggesting an increase in non-contributors as R increases.

While similar results exist in other domains, for example, the spite
dilemma suggests that people are more concerned about their relative
ranking among their peers than the absolute amount of payoff they
receive [47], in our model, none of the agents adopt such a decision
strategy (Table 2). To understand why the proportion of non-
contributors increases when the shared benefit increases requires
insight into the interrelationship between costs and benefits (Eq. (1)),
and the decision strategies (Table 2).

At any particular decision point, agents adopt one of six strategies
(Table 2). Agents who adopt contribute, do not contribute, or repeat
last action strategies do not directly use the shared benefit value R
in making their decision on whether to contribute or not. For exam-
ple, all agents who use the contribute strategy, contribute. Similarly,
agents using the repeat last action use the same decision they did
previously. Agents with the mimic majority strategy rely on the
actions of other known agents before making their decision, and are
only indirectly affected by the value of R. Agents adopt the learn from
the past strategy only when there is a negative net benefit (Table 4),

and this is more likely to happen for small values of R. For larger values
of R, few agents follow this strategy, so it has minimal impact on the
overall proportion of non-contributors. Table 7 shows the average
proportion of known non-contributors and contributors for each
decision strategy across all values of R. When R=0 and the average net
benefit is negative, 24.70% of all known agents follow the learn from
the past (Table 7). But, for all other values of R, where the average net
benefit is non-negative, less than 1% of agents follow this strategy.
Thus, the impact of this strategy on the overall proportion of non-
contributors is small for most values of R.

Now, consider those agents who follow the mimic winners strategy.
Agents who follow this strategy compare the average net benefit B

–1 for
all known agents who are contributors with B

–0 the average net benefit
for all knownagentswhoarenon-contributors, and choose to contribute
if the relative benefit (B

–1−B–0)≥0. In other words, agents following the
mimic winners strategy become contributors when the relative benefit
for all known agents is non-negative. For our model (Eq. (1)) this
happens for smaller values of R. Table 8 shows the average relative
benefit for all known agents at the end of the simulation, and clearly
shows that smaller values of R lead to greater relative benefits. Thus, asR
increases, the relative benefit decreases, and we would expect to see a
greater portionof agentswhouse themimicwinners strategy to become
non-contributors. This can be seen in Table 7, where the proportion of
known non-contributors for the mimic winners strategy increases as R
increases. When R=0, where the average relative benefit is 3 (Table 8),
21.23% of all known agents follow the mimic winners strategy, with
2.21%being non-contributors, and the rest,19.03%, as contributors. Now,
consider when R=12 (Table 7), with an average relative benefit of −9
(Table 8). Here, 17.88% of known agents who follow the mimic winners
strategy are non-contributors, and only 1.66% are contributors, a
significant change. Thus, agents following the mimic winners strategy
are directly affected by the level of R, actually, by the relative benefit,
which in turn affects those agents who use themimicmajority strategy.
As the proportion of non-contributors among the agents who follow the
mimic winners strategy increases, it significantly increases the pro-
portion of agents who are non-contributors, thereby changing the
majority of agents from contributors to non-contributors. Agents
following the mimic majority strategy then adopt the non-contribution
strategy of this new majority. The values in Table 7 show a strong
correlation of 0.9853 between the proportion of non-contributors in the
mimic winners and mimic majority strategy, thus supporting our ob-
servations. Given the above results, the average proportion of non-
contributors can be predicted using simple linear regression with two
independent variables,R and a dummyvariable, coded as1 if the relative

Table 6
Average proportion of non-contributors across identity transparency I

Identity transparency (I)

50% 90%

P=3 P=5 Total P=3 P=5 Total

A:
S=3 .4805 .7098 .5951 .4397 .6709 .5553
S=5 .3755 .4797 .4276 .3576 .4400 .3988

B:
Q=2 .4808 .7095 .5951 .4414 .6703 .5559
Q=4 .3751 .4799 .4276 .3558 .4406 .3982

C:
Total .4280 .5947 .5114 .3986 .5554 .4771

Table 7
Average proportion of known non-contributors (non-C) and contributors (C) by decision strategy

Decision strategy

Don't contribute Contribute Mimic majority Learn from the past Mimic winners Last action

R Non-C C Non-C C Non-C C Non-C C Non-C C

0 0.0086 0.0066 0.0000 0.2285 0.0140 0.2330 0.0221 0.1903 0.0000 0.0361
1 0.0083 0.0066 0.0242 0.1900 0.0049 0.0004 0.0357 0.1803 0.0246 0.1782
2 0.0082 0.0066 0.0240 0.1900 0.0028 0.0001 0.0614 0.1506 0.0392 0.1640
4 0.0080 0.0064 0.0955 0.1085 0.0065 0.0001 0.1240 0.0788 0.0995 0.0908
8 0.0077 0.0062 0.1898 0.0010 0.0098 0.0002 0.1796 0.0158 0.1678 0.0092
12 0.0077 0.0061 0.1908 0.0000 0.0102 0.0002 0.1788 0.0166 0.1675 0.0091

Table 8
Average relative benefit for known agents

R B
–1−B–0

0 3
1 2
2 1
4 −1
8 −5
12 −9

538 J. Wang et al. / Decision Support Systems 46 (2009) 532–541



Author's personal copy

benefit is non-negative and 0 otherwise. Table 9 shows the results, and
indicates that nearly 96.55% of the variation can be explained by the two
independent variables. Positive coefficients for R and a negative coeffi-
cient for thedummyvariable indicate that higher values ofR and smaller
relative benefit lead to a greater proportion of non-contributors.

Thus, our simulationmodel allows us to explore and understand the
complex interaction between benefits and costs (Eq. (1)), and decision
strategies (Table 4) on organizational knowledge sharing. While our
results are consistent with previous studies, organizations also face
challenges in decidinghowandwhen incentives andpenalties shouldbe
administered to encourage knowledge sharing. For example, if an or-
ganization already has incentives in place, what should they do next to
increase knowledge sharing? To answer such questions, we apply data
mining techniques to our simulation results. Specifically, we apply
partitioning, also known as decision or regression trees, to our simula-
tion output [21]. Partitioning allows us to systematically analyze our
output to detect unknown relationships. It works by creating a suc-
cessive tree of partitions according to a relationship between the de-
pendent and independent variables [21]. In our case, the independent
variables are the different factors of Table 3, and our dependent variable
is the proportion of non-contributors. A partitioning algorithm seeks
to predict the dependent variable by searching through all possible

groupings of the independent variables, recursively forming a tree of
decision rules until the desired fit is obtained. The set of decision rules
can then be used to decide how incentives and penalties should be
implemented to increase knowledge sharing.

Fig. 3 shows a tree of decision rules that resulted by applying a
partitioning algorithm to our simulation results. The top node indi-
cates that in the whole sample, approximately 49.42% of all indivi-
duals were non-contributors. As expected, R, the benefit from shared
contribution, is the single best predictor of the proportion of non-
contributors. When the shared benefit is high, RN4, nearly 96% of the
individuals in the sub-sample are non-contributors, compared to 58%
when R=4. The proportion of non-contributors is even lower, only
15.67%, when Rb4. When R≥4, no further predictors (splits) will
significantly reduce the number of non-contributors. Thus, if the
organizationhas a high value for the shared benefit, other incentives or
penalties will be ineffective in increasing knowledge sharing.

When the initial shared benefit is low (Rb4), the organization
can improve knowledge sharing by increasing Q, the cost for not con-
tributing. When Q=4, only 6% of the remaining individuals are non-
contributors, as compared to 25.11% when Q=2 (Fig. 3). When the cost
for not contributing is low (Q=2), knowledge sharing can be improved
by increasing S, the incentive for contributing, followed by reducing the
cost P for enforcing penalties on non-contributors. When incentives for
contributing is low (S=3), the organization should first reduce P, the cost
of enforcingpenalties onnon-contributors, followedby further reducing
R. Thus, when incentives for contributing are low (S=3), and the cost of
enforcing penalties is high (P=5), there is little benefit for contribu-
tors, and nearly 73.31% of agents are non-contributors. Contribu-
tions can be encouraged here by further reducing the benefit
from shared contribution R. When R=0, 26.21% of agents are non-

Table 9
Linear regression results

Term Estimate p-value

Intercept 0.9251 0.0000
R 0.0042 b .0001
Relative benefit indicator −0.8304 0.0000

R2=0.96557.

Fig. 3. Partition tree-proportion of non-contributors.
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contributors, but for R=1 or 2, 96.86% of agents in the sub-sample are
non-contributors. When S=3, and the cost of enforcing penalties is
small, P=3, only 11.26% of agents are non-contributors. This can be
further reduced by reducing R the benefit from shared contribution.
In general, increasing the personal benefit for contribution, by re-
ducing the cost P and increasing S, while at the same time, increasing
the cost Q for non-contributors, produces the largest percentage of
contributors. In the best case, only 5% of all individuals in the sub-
sample are non-contributors (Fig. 3). The model shown in Fig. 3
explains nearly 85% (R2=0.848) of the variation in the dependent
variable.

The results in Fig. 3 show a sequence of logical steps that an
organization can follow to increase knowledge sharing. Such analysis,
especially when the interactions between factors are not clear, pro-
vides the organizationwith insights on how and where to concentrate
efforts to improve knowledge sharing. Importantly, using agent-based
simulation models allows us to explore more complex knowledge-
sharing relationships, and provides insight into results thatmay not be
obvious with other approaches.

The objective of this paper was to explore knowledge sharing using
an agent-based simulation model. Effort was made to ensure that our
model assumptions were based upon established theories and know-
ledge. Factors that influence cooperative behaviors, and agents' strategy
choices, were extracted from findings reported in prior research. Our
results support previous studies, and validate our model assumptions.
One result indicates that the greater the personal benefit from con-
tributions, the higher the levels of knowledge sharing. This result sup-
ports previous empirical studies [37,20]. Other experimental studies have
also found that contributions are more likely when individuals have the
ability to punish the defectors [37]. This is in agreement with our simu-
lation result that indicates that lowering the cost for sharing knowledge
and enforcing penalties reduces the proportion of non-contributors.

6. Implications and conclusions

In this paper, we examined knowledge sharing through agent-
based simulation. We used a basic case of knowledge sharing and
constructed a simplified model to illustrate the feasibility and poten-
tial benefits of the agent-based approach. Our model demonstrates
that irrational and adaptive behaviors can be approached through
agent-based simulation. In comparison with traditional modeling
techniques, an agent-based simulation modeling offers several unique
features. It retains much of the flexibility of linguistic modeling, and
the consistency and precision ofmathematical modeling techniques. It
is well suited for analysis of complex adaptive systems and emergent
phenomena. Our simulation results demonstrate that in the presence
of non-linear and adaptive interaction, unintended and unpredictable
outcomesmight emerge at the systems level. For example, we observe
that lowering the benefits from shared knowledge significantly
increases the level of contribution. This observation seems counter-
intuitive and contradicts some of the studies that indicate that an
increase in the marginal value of a public good leads to a higher level
of contribution [22]. Such studies typically argue that an increase in
the marginal value of a public good results in two distinct types of
returns for the contributor: internal return, as it reduces the net cost of
making a contribution, and external return, as it increases the benefit
of a contribution to others. The level of cooperation increases as many
people are motivated by altruism and they are sensitive to the cost of
helping others in the provision of public goods [22]. However, pre-
vious empirical and theoretical research has mostly been restrictive in
their findings by their conditions and assumptions. Assuming that
the higher marginal value of a public good is a return, rather than a
vulnerability to the contributor, may not be appropriate to situations
in which individuals compete and are concerned with not only their
own payoff but also their payoff relative to that of others. This is
illustrated in our model by the agents who follow the mimic winners

strategy, and who base their decision on the relative benefit rather
than the absolute payoff. Importantly, our model allows us to under-
stand the complex interaction between costs, benefits, and decision
strategies. Such outcomes are difficult to foresee by examining a
component of the system in isolation, so an agent-based simulation
approach like ours provides a viable way to observe emergent states
that are hard to predict, as in knowledge sharing.

Hence, from a managerial perspective, the agent-based simulation
approach assists the identification of unintended negative outcomes.
In situations characterized by dynamic complexity, such as those
involving knowledge sharing, this approach offers a systems perspec-
tive and sensitizes researchers to the possibility of interaction and
outcomes that are difficult to predict. The results generated from our
simulation model help managers attend to the possible negative
effects of increasing the value of shared knowledge by rewarding
individual performance. It helps managers rethink their human re-
source policies to align individual benefits with organizational com-
petitive advantages. Further, as demonstrated in the Results section,
the agent-based simulation approach can be combined with other
techniques such as data mining to develop a potent management
analysis tool that provides the organization with insights on what
interventions are more effective than others.

As a further model enhancement, a measure of distance between
individuals might also be incorporated. It is reasonable to assume that
identities of contributors or non-contributors are more likely to be
known by those individuals in their social networks. The potential
effects of such a distance–identity interaction feature might be studied
by extending our present model. For example, the mimic winners
strategies require global information. But, it is more likely that
employees have such information in only their social network. Then,
howdoes the size and characteristics of suchnetwork influencedecision
strategies, and therefore knowledge sharing? Further, assumptions on
organization interventions can also be relaxed to extend our model. For
example, our model assumes a constant rate for benefits and costs
(Eq. (1)). But, this is unlikely to be true in some organizations, where
benefits and costs may not only be non-linear, but also dynamically
changing based on other organizational conditions.

Our argument for the potential of the agent-based simulation
approach does not imply that this methodology should replace
other traditional analytical techniques. Rather, a wide range of tech-
niques for model development and empirical assessment should be
used, and, in many cases, insightful comparisons can result when mul-
tiple approaches are used to tackle a single research question. Future
research can explore the use of adaptive techniques like genetic algo-
rithms and cased-based reasoning as part of agent-based simulations.
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