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Frontier regression models seek to explain boundary, frontier or optimal 
behavior rather than average behavior as in ordinary regression models.  
Ordinary regression is one of the most important tools for data mining.  
Frontier models may be desirable alternatives in many circumstances.  
In this chapter, we discuss frontier regression models and compare their 
interpretations to ordinary regression models.  Occasional contact with 
stochastic frontier estimation models is also made, but we concentrate 
primarily on pure ceiling or floor frontier models.  We also propose 
some guidelines for when to choose between them. 
 

 
 

1  Introduction 
 
Frontier or benchmark estimation models were first discussed by Aigner 
and Chu (1968), who fitted a Cobb-Douglas industry production 
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function to data on production levels and factors.  Here the Cobb-
Douglas model was proposed as the best possible, frontier or benchmark 
model for the data.  Observed production levels were modeled by 
subtracting nonnegative errors or inefficiency shortfalls from the 
frontier.  More generally, such models may be called frontier regression 
models.  They seek to explain boundary, frontier or optimal behavior 
rather than average behavior as in ordinary regression models.  Such a 
model may also be called a ceiling model as it lies above all the 
observations. (The opposite case is similarly called a floor model).  
Ordinary regression is one of the most important tools for data mining.  
Frontier models may be desirable alternatives in some circumstances.  In 
this chapter, we discuss frontier regression models and compare them to 
ordinary regression models.  We also propose guidelines for when to 
choose between them. 
 
There are a related class of models called Stochastic Frontier Estimation 
(SFE) models.  These are modifications of the pure frontier method first 
considered separately by Meeusen and van den Broeck (1977) and 
Aigner, Lovell and Schmidt (1977).  Here actual performance is 
modeled as the frontier model plus an error term composed of two parts.  
The first error part is normally distributed with mean zero.  It is usually 
justified as accounting for uncertainty in the frontier model.  The second 
error part is a nonnegative one, representing a measure of inefficiency 
error or deviation from the efficient frontier as in the pure frontier 
model.  This term is also called the inefficiency effect in Coelli et al. 
(1998).  The Aigner, Lovell and Schmidt (1977) method assumes that 
such nonnegative inefficiencies are distributed as half-normal. This 
permits the distribution of the total error to be specified and its 
parameters to be estimated by the maximum likelihood method. 
Stevenson (1980) extended that method to permit assumption of 
truncated normal and gamma distributions.  However, Ritter and 
Léopold (1997) have found that such models are difficult to accurately 
estimate. Recently, Troutt et al. (2001) have pointed out theoretical 
problems in maximizing the likelihood function for such models. In that 
research, it was found that the likelihood function is U-shaped. One end 
corresponds to assuming a pure frontier model and the other corresponds 
to a pure ordinary least squares regression model.  Thus, that research 
suggests that the maximum likelihood principle will choose one of those 
end point cases and not a mixed or SFE type model. We therefore 
concentrate on pure frontier models in this chapter.  



 3

 
2  Pure Frontier Models 
 
Consider the general composed error stochastic frontier estimation 
model given by  
 

                             yj = f(xj , θθθθ) + εj - ωj                                                                (1) 
 
where for j = 1, …,n 
 
 
yj is the dependent variable 
 
xj is a vector of measurements on independent variables in ℜ m 
 
θθθθ is a vector of model parameters in ℜ p 
 
f(xj , θθθθ) is a “ceiling” type frontier model – that is, observations without 
other errors will 
 
fall beneath the level given by the ceiling model.  A “floor” model is the 
opposite and the model specification becomes 
 
                                                 yj = f(xj , θθθθ) + εj + ωj                                            (2) 
 
 
εj is a white noise error term with variance σ2 
 
ωj is a nonnegative inefficiency error for observation j, independent of 
the εj .  Thus, a pure frontier (ceiling) model would be given by  
 
                                               yj = f(xj , θθθθ) - ωj                                                     (3) 
 
and similarly, a pure frontier (floor) model would appear as 
 
                                                     yj = f(xj , θθθθ) + ωj                                            (4) 
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The ceiling model would be most appropriate if the behavior of the 
observations is such that ‘more is always better’.  That is, the 
observations represent attempts to maximize the dependent variable.  
Similarly, the floor model would be appropriate in the opposite case.  
From this point of view, the OLS model can sometimes be regarded as a 
‘middle is better’ situation.  Fig. 1 depicts a scattergram of data pairs 
with the Ordinary Least Squares (OLS) regression model and a ceiling 
type frontier model. 
 

Figure 1 About Here 
 
It can be noted that the ceiling model is not necessarily the same as that 
obtained by raising the OLS model upwards until it just envelopes the 
data points from above. This is, of course, a heuristic approach to 
estimating a ceiling model in two dimensions.  A more dramatic 
difference can be seen for regression or frontier model that are specified 
to have zero-intercepts (so-called regression through the origin). Fig. 2 
depicts this contrast between and OLS and a floor frontier model for the 
same scattergram. 
 

Figure 2 About Here 
 
 
 
Figures 1 and 2 also suggest a motivation for the SFE models.  Namely, 
the position and slope of the ceiling model depends heavily on just a few 
of the upper most data pairs.  On the possibility that those data pairs are 
unrepresentative outliers, then one has less confidence that the correct 
frontier model has been estimated.  From the point of view of optimum 
seeking or purposeful behavior, such data points would represent 
unusually good performance in the nature of a lucky event.  For the 
purposes of this research, we assume that any such data have been 
removed or adjusted appropriately.  One might consider SFE models as 
motivated by a desire to smooth out the upper or lower boundaries with 
white noise adjustments as a more mechanical approach to this issue, 
however. 
 
Various approaches to estimating such pure frontier models have been 
proposed.  For example, if the sum of squares of the ωj                                            
is minimized as the model fitting criterion, then that procedure is a 
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maximum likelihood estimation (MLE) procedure when the ωj are 
distributed as half-normal.  Similarly, minimizing the sum of the ωj is 
MLE when they are distributed with the exponential probability density 
function.  In this work, we propose the latter criterion.  Namely, we 
assume in the rest of this chapter that models of the type (3) and (4) will 
be fitted or estimated by the criterion of minimum  Σjωj, but we use a 
different, more general rationale than the above kinds of distribution 
assumptions to be explained below. 
 
There are three reasons for this choice of criterion. First is the rationale 
of purposeful behavior.  If each observation is interpreted as an attempt 
to reach the target or goal given by the frontier model, then the ωj may 
be regarded as distances from the target.  As each attempt seeks to 
minimize such a distance, then over all instances or observations the 
sum of these would be minimized.  That is, the criterion of minimum 
Σjωj is taken as modeling purposeful behavior over repetitions of a 
single unit, or over a set of units.  This has been formalized in Troutt et 
al. (2000) as the Maximum Performance Efficiency (MPE) estimation 
principle. 
 
The second reason is that computation of a model solution for this 
criterion is flexible and straightforward.  Typically, the model is a 
simple linear programming model easily solved with a spreadsheet 
solver.  The model used in Troutt, Gribbin, Shanker and Zhang (2000) is 
an example. 
 
The third reason is that a model aptness test is available for this 
criterion.  Called the normal-like-or-better (NLOB) criterion, it consists 
of examining the fitted ωj values.  If these have a density sufficiently 
concentrated on the mode at zero, then the performance can be said to be 
as good or better than a bivariate normal model for a target such as a 
bull’s-eye in throwing darts.   Note that sometimes throwing darts is 
used as a metaphor for completely random guessing.  Here we use it 
differently, however.  If a data scattergram for dart hits is modeled well 
by a univariate density as steep or steeper than the normal, and with 
mode coincident to the target, then we regard this as very good 
performance, allowing for natural efficiency variation. The NLOB 
criterion can, in principle, be used with any distributional form for the 
fitted ωj values. However, it appears most naturally suited to the case 



 6

when these are gamma distributed.  Complete details on applying the 
NLOB criterion may be found in Troutt, Gribbin, Shanker and Zhang 
(2000). 
 
3  Contrasts of Meaning and Purpose 
 
Let us write fOLS(x) as a model for the data based on the OLS criterion, 
and similarly f*(x) as a, say, ceiling frontier model.  Then we have two 
representation of the data values, yj .  Namely, 
 

                             yj = fOLS(xj) + εj = f*(xj) - ωj                        (5) 
 

We note first that the two model values can and will likely be different.  
Which is valid or perhaps, most valid?  We can apply the test of 
normality to the OLS residuals and the NLOB criterion to the frontier 
residuals as an obvious first step that may support a choice.  But what if 
both tests are acceptable?  Then we suggest relying on context.  Namely, 
we ask whether the value yj can be regarded as in the nature of an 
attempt at getting high values.  If so, then the ceiling model would 
appear more appropriate.  By contrast, if these data values are thought to 
be merely random deviations from a mean response then the OLS model 
should be preferred.  A familiar example is that of a set of test scores for 
a student examination.  Either case, or even mixtures of these cases 
might apply.  If the exam were in a required course, for which an 
average grade is most desirable for the majority of the students, then the 
OLS model is compelling.  On the other hand, if the test is a college 
entrance or professional qualification exam, then a higher grade is likely 
to be better for most students.  In that case, the frontier model would 
likely be best. 
 
Such difficult to call cases might be especially expected to occur with 
large sample sizes.  As an illustration, we consider an example in 
Madansky (1988).  There a large data set of 100 observations was 
simulated according to a gamma distribution anchored at zero.  Then 
various well-known tests of normality were applied to see whether they 
could correctly reject the normal distribution hypothesis.  Surprisingly, 
several of the tests did not reject the normal hypothesis.  The gamma 
distribution chosen appeared to be well modeled by a normal density 
according to several tests. 
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This example leads to several observations in connection with the 
representation (5).  First let us denote by a the average of the frontier 
residuals, ωj . Next we write εj* = ωj – a.  Then ωj =  εj* + a. 
Substitution into (5) yields 
 
yj = fOLS(xj) + εj = f*(xj) – (εj* + a) = (f*(xj) – a) -εj* 
 
or 
 
fOLS(xj) + a + εj = f*(xj) -εj* 
 
 
One is tempted to suggest in such a case that a suitable frontier model 
may then be obtained from the OLS model by translating it upwards  by 
the amount a.  However, this would require the two types of epsilon 
residuals to be equal and opposite in sign. That this is not generally true 
is most easily seen from Fig. 2. Namely, if the OLS model were 
translated upward it would apparently intersect the frontier model. Thus 
even if the frontier residuals are normally distributed, the frontier model 
may differ from the OLS model adjusted for the mean frontier residuals.  
In this case we may even assume that the frontier model for model was 
fitted by an OLS criterion with the constraint of passing through the 
origin.  As the fitting criterion is changed and more complex constraints 
are present, it is reasonable to expect differences between the forms of 
models obtained – despite the possibility of normally distributed 
residuals for both models. 
 
Moreover, the foregoing points suggest the possibility of obtaining 
somewhat misleading regression analyses on comparative performance 
data analysis.  Let us consider the context of explaining the 
performances of firms according to a single independent variable, x. We 
might think of x as some measure such as size in dollar valuation of 
assets, say, along with a dependent variable, y, as some acceptable 
measure of performance. For simplicity, we assume that the 
performance variable is not directly proportional to size.  The analyst 
may well obtain an acceptable OLS model for such data. Perhaps the 
fitted model suggests that y = a0 + b0x explains the firm performance 
data very well.  However, as an OLS regression model, this result can be 
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interpreted in an average or typical sense.  Namely, on average, firms of 
size x in this context will be expected to have observed performances 
given by that fitted model.  But what exactly is the role of x here?  Does 
the level of x reflect a higher potential performance for firms, or does 
the level of x pertain to performance ability? To better see this contrast, 
suppose that a frontier model is fitted to the same data and yields the 
different model y = a1 + b1x .  In this frontier model, x affects the 
estimated upper limit of performance rather than the performance with 
respect to that goal. One may also compute an average performance 
based on this model from its residuals. It may happen that performance, 
as measured by the ωj values, does not really vary with the value of x. 
Alternatively; it may vary in some other fashion.  It may be proposed 
that when a goal such as highest possible performance is present, then 
both the level of that goal and performance with respect to it can be 
affected by independent variables.  An OLS or average oriented model 
may therefore be confounding two phenomena.  Variation of 
performance can be expected in almost any goal directed behavior.  
Such performance fluctuation may be a regarded as an always present 
effect or variable, which itself may be affected by variables proposed as 
influential in the OLS model. 
 
4 Data Mining Uses and Suggested Guidelines 
 
The ceiling frontier model seeks to explain best performance as a 
function of one or more independent variables.  Such models may be 
especially attractive for many data mining (DM) applications.  For 
example, interest often centers on best instances such as customers most 
responsive to mailings, or safest drivers, etc.  For mailings of a given 
type, it would be desirable to predict a ranking of most responsive 
customers so that efforts can be best directed.  Namely, if only, say, 
1000 are to be mailed, then those predicted as the top 1000 would be 
attractive for consideration.  Similarly, an insurer may be interested in 
characterizing its best and worst customers according to a model.  
 
Here we briefly propose several potential DM and related applications: 
 
Supplier Ranking  - In Supply Chain Management, firms must often 
consider and choose among potential suppliers.  While cost is an 
important variable, many others may need to be considered.  These 
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include, for example: lead time performance, quality measures, capacity 
and flexibility measures, to name only a few.  Generally, it will be 
desirable to select and characterize the best or highest performing 
suppliers among these. 
 
Technology Choice – For the choice of industrial robots, 
instrumentation and similar technology, it is often possible to test and 
collect data on several possible choices.  Obviously, the firm will be 
interested in the attributes of the best performers for the selection 
decision.  
 
Total Quality Management - Every year in the total quality 
management area, the Malcolm Baldrige National Quality Award is 
given to a small group of firms.  The guidelines for winning this 
prestigious award may not be clearly spelled out.  One would be 
interested in the dimensions along which the award winners may differ 
from the ‘average’ firm.  
 
Marketing - In marketing, the 20/80 rule, sometimes called Pareto’s 
Law or Principle,  is appropriate for modeling the usage rate of the 
heavy users.  Typically, the top twenty percent (heavy users) of the total 
number of consumers in the marketplace will account for roughly 80% 
of total revenue.  Thus, it will be quite misleading for a firm to base its 
marketing strategy on the average purchase behavior of its consumers.  
A firm in most cases will develop a ceiling model for its ‘heavy’ user 
group.  Likewise, a ‘floor’ model would be appropriate for the non-users 
(users that a company may have no hope of getting – or perhaps those 
they do not wish to have such as high risk drivers for car insurance).   
 
Airline Productivity - The efficiency frontier models have been used to 
examine productivity in the airline industry.  A Cobb-Douglas total cost 
function is used for the estimation of the efficiency frontier.  The 
dependent variable is the total cost for an airline.  The independent 
variables are (a) passenger output (number of passengers times distance 
traveled); (b) labor cost for an airline; (c) fuel cost for an airline; and (d) 
capital costs for an airline.  Airlines that lie on the efficient frontier are 
presumably the most production efficient.  The inefficiency measures of 
airlines can be constructed by taking the distance between any airline 
with that of the frontier. 
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Comparison of Stocks and Mutual Fund  - Investors are not only 
interested in the average performance of the stock market.  A ceiling 
model corresponds to the top performing stocks while a floor model will 
provide insights into the ‘poor’ performers, firms that may potentially 
declare bankruptcy.  Similarly, investors would like to decide between 
mutual funds with deeper information than just a simple comparison of 
recent performances. 
 
Employee Loyalty - Employee turnover refers to the loss of trained 
employees, especially when such losses are early and costly.  Data 
Mining could be applied to Human Resources data marts with the help 
of a floor frontier regression models.  Which available attributes best 
explain the earliest termination cases?  Such information could be used 
to score potential new hires on likelihood to terminate early.  In this 
context the opposite case of most loyal employees might similarly be 
modeled as a ceiling type model. 
 
 
By considering the general features of the above examples, we may 
propose the following suggested guidelines for considering frontier 
models instead of, or in connection with regression data mining 
applications: 
 
1.  There is interest in characterizing and modeling the best and/or worst 
cases in the data.  
 
2.  Behaviors of both customers and the businesses that serve them are 
of the managed kind.  In general, such ‘managed data’ or data from 
purposeful or goal directed behavior will be amenable to frontier 
modeling. 
 
3.  Some loss of inferential capability can be tolerated. (See limitations 
below). 
 
4.   High-lier data (for ceiling models) and low-lier data (for floor 
models) can easily be identified and/or adjusted. 
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5  Other Models and Applications 
 
The general approach of frontier models might be carried over to other 
models and contexts.  For example, logistic frontier regression might be 
aimed at modeling the most probable cases. Applications of this kind are 
attractive for predicting poor and/or excellent credit risks and for income 
tax filers most likely to be evading taxes. 
 
Policy capturing studies have been around for a long time.  Generally, 
this approach uses regression, classification, or other data models in 
order to explain and predict dichotomous, categorical or ordinal 
outcomes.  For example, it may be useful for corporate legal planners to 
predict the likely outcome of legal actions based on a human resources 
case profile.  The prediction of attribute levels or ranges for the best 
cases might be compared to those for the average case.  A planned legal 
strategy may be judged average or better than average and compared to 
the appropriate model in that case to improve decision making about 
out-of-court settlements, for instance.  
 
 
 
6  Limitations and Further Research 
 
As noted earlier, a potential limitation of these models arises in 
connection with outliers.  In the present setting, one may have two 
kinds, which might be called high-liers and low-liers, respectively.  
High-liers would be problematical for ceiling frontier models.  Such 
observations suggest fortunate high performance unrelated to the 
predictor model.  Similarly, low-liers would be of concern for floor 
models.  As noted above, these concerns can be regarded as a motivation 
for SFE type models.  Unfortunately, SFE models are difficult to 
estimate at the present time.  Additional research on this class of models 
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would be helpful when low-liers or high-liers are not easy to identify or 
accommodate. 
 
A generalization of frontier type models would be to what may be called 
percentile and stratification response type models. One may envision a 
modeling approach that uses a parameter, z, with range [0,1].  Such a 
model would seek to associate observed values with a z value so that the 
model with z = z0 provides the best prediction for the z0-percentile 
response variable.  A closely related, percentile estimation type of model 
would seek to best explain the upper z0 percent of the potential 
responses.  That is, if one starts with a pure frontier model, it would be 
possible to estimate, say, the 50th-percentile level of the dependent 
variable for a given value of independent variable values.  However, if 
we know in advance that we wish to model specifically the upper 50th-
percentile of cases, then it is conceptually possible to obtain a different 
model than that based on the pure frontier one. 
 
Of course, a great advantage of OLS regression models lies in the 
inferential capabilities of normal distribution based theory.  The NLOB 
criterion provides some help in this direction for the frontier models.  
However, more statistical theory work along those lines would clearly 
be useful. 
 
7  Conclusions 
 
 
Frontier regression models seek to explain topmost or bottommost 
performers in the data.  Many data mining applications can be so 
conceived.  Several potential applications of this type were discussed. 
Such models are also natural when the data arise from purposeful, goal-
directed or managed activities.  A test of this characteristic, called the 
Normal-Like-Or-Better (NLOB) performance criterion has recently been 
developed. Using the fitting criterion called Maximum Performance 
Efficiency (MPE) estimation, the sum of efficiency residuals is 
minimized.  This criterion often reduces to a linear programming model 
and is therefore straightforward to perform in spreadsheet models with 
solver capabilities. 
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