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With recent advances in parallel computation, distributed simulation has become a viable way of dealing with time-consuming
simulations. For distributed simulations to run e�ciently, care must be taken in assigning the tasks (work) in the simulated system to
the available physical processors in the computer system. An ine�cient assignment can result in excessive communication times
between processors and unfavorable load conditions. This leads to long run times, possibly giving performance worse than that with
a uniprocessor sequential event-list implementation. This paper establishes the feasibility, and in some cases the necessity, of using
dynamic task allocation (rather than a-priori static allocation) in distributed simulation. A dynamic reallocation strategy is
developed, and experiments on an iPSC/2 Hypercube indicate that signi®cant improvements in run time can be achieved at low cost.

1. Introduction

With recent advances in parallel computation, Distrib-
uted Simulation (DS) has become a viable way of dealing
with time-consuming simulations. For example, consider
a simulation of large circuit-switched communication
networks that consist of nodes and links between node
pairs. A link consists of a number of trunks, each having
the capacity needed to carry exactly one call. To place a
call between a pair of switches, a path in the network is
identi®ed, and on each link in the path, a trunk is allo-
cated for the sole use of the call. These trunks are then
held for the duration of the call. During periods of high
load, some calls may be blocked since the number of
trunks on each link is limited.
Designers of circuit-switched networks are concerned

about how di�erent factors like network routing and
tra�c patterns a�ect call blocking. A typical requirement
is that call blocking not exceed a prespeci®ed threshold,
say, 0.01%, except during emergencies. Simulations of
such networks are time-consuming because the number of
simulated events per unit of real time is large, especially in
emergency situations. For example, a useful simulation of
the AT&T network would involve at least on the order of
109 events (Eick et al., 1993). Fortunately, such simula-
tions o�er great potential for speedup using DS.

In DS, unlike sequential event-list simulation, there is no
global event list or global simulation clock. Here the
physical system to be simulated is represented by a col-
lection of Logical Processes (LPs) that communicate via
timestamped messages along directed channels in the
logical system. For example, the logical system of Fig. 1
could represent a work center with 10 machines, with
each LP modeling a machine. The timestamped messages
in DS represent events in a sequential simulation. In
Fig. 1, timestamped messages originate from LP1 (the
source), and leave the system from LP10 (the sink). At the
branch point LP3, messages go to LP4 and LP8 with equal
probabilities.
An important factor a�ecting the performance of DS

models, like the Chandy and Misra model for DS
(Chandy and Misra, 1979, 1981; Misra, 1986), is the al-
location of LPs to available (physical) processors. The
primary objective in making an assignment is to reduce
the realized run time of the simulation. An ine�cient
assignment can result in excessive communication times
between processors and unfavorable load conditions.
This leads to long run times, possibly giving performance
worse than that with a uniprocessor sequential event-list
implementation.
The problem of assigning LPs to processors to

minimize the run of the simulation is one instance of the
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Task-Allocation Problem (TAP) found in distributed
systems, and it is NP-complete (Garey and Johnson,
1979). Similar problems exist in other ®elds. For example,
a shop ¯oor in a manufacturing environment can be
viewed as a group of work centers. Each work center is
composed of manufacturing cells containing machines,
robots, and tools. Activity planning is a complex problem
in which activities (jobs) must be selected, tools must be
assigned to machines, and resources (machines) must be
allocated and scheduled to meet production goals. With
the introduction of robotics and other ¯exible technolo-
gies in manufacturing, the number of ways in which a
product can be manufactured has increased. This in turn
introduces additional complexity in activity planning, as
more options have to be considered to determine the best
schedule. This activity planning is a TAP, where an ob-
jective may be to maximize the throughput of jobs
(Bourne and Fox, 1984). An analogy to the current re-
search is to view jobs as messages, tools as LPs, and
machines and robots as processors. Our research in dis-
tributed simulation task allocation should provide insight
for analysis and management of such industrial systems.
Various static and dynamic load-sharing strategies have

been proposed for TAPs (Stone, 1977; Bokhari, 1979;
Livny and Melman, 1982; Ni and Hwang, 1985; Nicol
and Reynolds, 1985; Tantawi and Towsley, 1985; Eager
et al., 1986; Iqbal et al., 1986; Lu and Carey, 1986; Chu
and Lan, 1987; Baumgartner and Wah, 1989; Shin and
Chang, 1989; Nandy and Loucks, 1992; Goswami et al.,
1993; Woodside and Monforton, 1993), but their poten-
tial is limited for Distributed Simulation Task-Allocation
(DSTA) problems (Shanker, 1990; Shanker et al., 1993).
The results of previous studies on solving TAPs in dis-
tributed systems indicate that state-dependent (dynamic)
load-sharing strategies perform better than static strate-
gies, but have higher overhead and are sensitive to in-
adequate or inaccurate status information. While
dynamic strategies are more appropriate for task allo-
cation in DS, existing schemes tend to assume knowledge
of many parameters that in practice are not known.
Unlike previous studies where strategies are set up for
externally generated messages (tasks), in DS the rate of
message generation depends internally on the strategy in
e�ect (Shanker, 1990; Shanker et al., 1993). For example,
the arrival rate of messages for the logical system of
Fig. 1 depends on the processor to which LP1 is assigned,
so the overall load in the system can be a�ected by
changing this assignment. Other complicating factors in

DS include unknown precedence relationships, realloca-
tion of LPs rather than individual messages, and the fact
that relatively slow inter-processor communication times
may imply that a balanced load across processors may
not be the proper strategy if the objective is to minimize
run time. For these reasons, there is room for improve-
ment of dynamic metrics and schemes for TAPs as ap-
plied to DS.
In this paper, we present a dynamic reallocation

strategy, based on the congestion measure developed in
Shanker et al. (1993), that is suitable for DS problems
where the objective is to minimize the run time of the
simulation. By run time we mean a realization that is a
function of the underlying simulation's probabilistic
structure and the strategy adopted for implementation.
For simulations using the same random numbers for
identical purposes, di�erent strategies could lead to dif-
ferent realizations of run time. Any strategy that consis-
tently lowers this run time would lead to a lower expected
run time. Experimental results suggest that the dynamic
strategy provides us with an intuitive way of reallocating
load to reduce simulation run time. As in Shanker et al.
(1993), we use the Bryant/Chandy/Misra model (Bryant,
1977; Chandy and Misra, 1979, 1981; Misra, 1986) in our
experiments.
The next section presents the reallocation strategy.

Experimental design is discussed in Section 3, and results
are in Section 4. Limitations of the strategy are in
Section 5, and conclusions are in Section 6.

2. Strategy for reallocation

Two factors must be evaluated each time dynamic real-
location is considered: the cost of making the realloca-
tion, and the bene®t that can be achieved due to it. To
carry out a dynamic scheme, time is spent collecting
statistics, determining the new allocation, and reallocat-
ing the load.
To determine the cost e�ectiveness of a scheme we

must know the bene®t and cost of implementing it for
each reallocation. While the cost can be estimated accu-
rately, it is harder to determine the bene®t since run time
is known only at the end of the simulation. An equivalent
but more tangible measure is ds, the expected departure
rate of messages from the system. As run time is related
inversely to ds, an assignment that increases ds will reduce
run time if the cost of reassignment does not o�set the
improvement in the departure rate. While it may not be
possible to predict the exact run time of the simulation,
by observing the change in ds due to a reallocation, the
apparent bene®t may be predicted. Unlike run time, ds
can be measured during the simulation, and by observing
the change in it, the relative e�ects of an assignment can
be estimated.

Fig. 1. A logical system with 10 LPs.

204 Shanker et al.



Towards this end, we use the message utilization pj of
processor Pj, developed in Shanker et al. (1993), as a
measure in our dynamic scheme. Speci®cally, letting d be
the number of available processors, we de®ne for pro-
cessor Pj, j � 0; . . . ; d ÿ 1,

pj � kj=lj; �1�
where kj = the arrival rate of new messages and lj = the
service rate of messages.
A message to LPi on processor Pj is a new message if it

either comes from an LP that is assigned to a di�erent
processor from the one to which LPi is assigned, or if LPi
is a source LP. For example, any message generated at
LP1 (Fig. 1), a source LP, regardless of the assignment of
LPs to processors, is a new message to the processor to
which LP1 is assigned. Similarly, if LP1 and LP2 are as-
signed to di�erent processors, any message from LP1 to
LP2 would be a new message to the processor to which
LP2 is assigned. A new message to processor Pj may visit
many LPs on that processor before leaving it. At each LP,
the message experiences a delay. A message is delayed
because of waiting in queue until its precedence rela-
tionships are satis®ed and the processor can execute it,
and because of the execution time incurred at that LP.
The total execution time incurred by a message on Pj is
the sum of the execution times incurred at the various LPs
visited by that message. Then wj � 1=lj is the expected
execution time incurred by a new message to Pj.
The metric (1) is based on the observation that, given kj

and lj, the maximum departure rate dj of messages from
Pj can be predicted. When kj < lj, the maximum depar-
ture rate is limited by kj. Similarly, when kj � lj, the
maximum departure rate is limited by lj. In fact,

dj � min�kj; lj�: �2�
As discussed in Shanker et al. (1993), the metric has

important rami®cations for any allocation scheme using
it as a measure to minimize run time.

· pj re¯ects the load on processor Pj. If pj > 1 then Pj
is receiving messages faster than it can process them.
This is an unstable condition that sometimes arises in
distributed-simulation environments and it is im-
portant to recognize and correct such situations.

· Assignments where precedence relationships are not
being satis®ed in a timely manner can be identi®ed by
using the metric as a measure of load. Reallocation
can then be considered to minimize this e�ect.

· The e�ect of heterogeneous processors and positive
communication times can be captured by dynamic
schemes using the metric.

· The potential bene®t of a proposed reassignment
during the simulation can be estimated before it is
implemented. Thus, the cost e�ectiveness of any
proposed allocation, as compared to the present one,
can be estimated. The following assumptions are
made in estimating the potential bene®t:

± We either know or can collect observations to
predict expected arrival and service rates of
messages. (However, no assumption is made
about their distributional forms).

± We can collect observations to estimate ex-
pected communication rates between two pro-
cessors for each message type.

± The simulation at any point will behave like its
recent past. This is an important assumption
because allocation schemes are based on the
observations collected.

The dynamic scheme developed below builds on the
characteristics of the metric, and is implemented in three
phases: transfer, identi®cation, and location phases.

· The transfer phase determines when and at which
processor(s) a reallocation should take place.

· The identi®cation phase identi®es the LPs that should
be reallocated away from the a�ected processor(s)
determined in the transfer phase.

· The location phase identi®es the processors to which
the LPs determined in the identi®cation phase are
reallocated.

2.1. Transfer phase: identifying processors
for reallocation

This phase identi®es the processors for reallocation, and
the times at which a reallocation should be considered. As
a reallocation involves moving LPs from one processor to
another and not just individual messages, it is important
that a reallocation be done only when the state of the
a�ected processor has changed. The state of a processor is
de®ned by the value of pj in relationship to three
thresholds: Tu, Tl, and Ta. The upper threshold limit is Tu,
the lower threshold limit Tl, and Ta denotes the availability
of a processor.
A processor Pj is overloaded and a candidate for real-

location if pj > Tu. Ideally, we would like pj � 1; 8 j, as
this would indicate that all processors are being utilized
to the fullest (though, because of communication costs
this may not always be the best allocation for minimizing
run time). But, as the arrival process of messages is
usually unknown, and because precedence relationships
for messages have to be satis®ed before the messages can
be executed, even when kj < lj, Pj may experience an
increasing queue of pending messages leading to a full
bu�er during the simulation. As any processor having
pj > Tu, Tu < 1, is a candidate for reallocation, Tu pro-
vides us with a means of controlling the maximum al-
lowable load on a processor.
A processor Pj is underloaded if pj < Tl. This state in-

dicates that not enough work is coming into Pj, and is
more likely to occur in ®ne-grained applications, where
communication time becomes signi®cant. For example, in
a parallel add of two vectors, as the execution time needed
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for each add operation is likely to be small, communica-
tion time becomes signi®cant. In such situations, LPs
could be transferred to Pj to increase its work, or the LPs
in Pj could be distributed among other processors to re-
duce the communication among the processors, thereby
reducing run time. Especially in the latter case, LPs should
be assigned to reduce the overall run time and not just the
communication time. Though the value of Tl depends on
the computer system and the application, for most coarse-
grained applications where communication is insigni®cant
compared to execution time, like those in this paper, no
processor is likely to be underloaded.
To determine a new allocation (discussed below), we

say Pj is available if pj < Ta < Tu. A threshold value be-
low Ta signi®es that the processor can receive some ad-
ditional LPs without becoming overloaded. We can also
view Ta as the desired threshold for all processors to
maintain during the simulation. In our discussion, we do
not necessarily di�erentiate in notation between param-
eters and their ®nite-horizon estimates. For example, pj
refers to the message utilization of processor Pj, but when
calculated during the simulation will refer to the estimate
of the message utilization. In most cases, it will be clear
from the context if the notation refers to the parameter or
to the estimated value.
The frequency of reallocation requests depends on the

sample size used to estimate pj, which is calculated by
collecting observations for a ®xed number of messages
leaving Pj (Shanker, 1990). The sample size used in the
scheme is a factor controlled by the modeler. If the
sample size is small, but adequate for inference, it will
ensure that the true conditions of the system are closely
mirrored by the observations, but at the same time it will
introduce communication tra�c overhead as state infor-
mation has to be passed among the processors. On the
other hand, infrequent requests for reallocation reduce
tra�c overhead, but also reduce sensitivity to state
changes. The optimal sample size will depend to a large
extent on the system being simulated and the costs in-
volved in observing state information. For simulations
like those considered here, a sample size between 400 and
1000 messages works satisfactorily. Note that we are
more interested in reallocating based on the current state
rather than on the true state of the system. For example,
assume that the system is inherently stable, i.e., pj < Tu,
8 j. We are then interested in time periods when (the
current ®nite-horizon estimate of) pj � Tu for some j.
Though the true state implies stability, a reallocation
would still be considered to smooth out the load.
The frequency of reallocation would thus depend more
on the cost e�ectiveness of the allocation scheme than on
the statistical validity of the presumed state of the node.
If reallocations could be performed at no cost, a new
assignment could conceivably be implemented for each
message arrival even though one observation will not
provide much clue to the true state.

The scheme followed in this phase is as follows: A
processor is a candidate for reallocation if it is either
overloaded or underloaded. The processor ultimately
chosen, say Pj, denoted as the critical processor, is the
most overloaded processor. That is, pj > pi; i 6� j, and
pj > Tu. If no overloaded processors exist, the processor
with the least load is deemed critical. That is, if Pj is that
processor, then pj < pi; i 6� j, and pj < Tl.
As will be discussed in the location phase, a realloca-

tion is performed by moving LPs from an overloaded
processor to an available processor. The levels of Tu and
Ta thus a�ect the reallocation. High values of Tu would
mean that fewer processors become critical, and therefore
decrease the frequency of reallocation. But, low values of
Tu often lead to unnecessary reallocations. The choice of
Tu is therefore an important issue, and for simulations
like those in this paper a value between 0.90 and 0.95
performs satisfactorily. If we had more knowledge of the
system, Tu could be re®ned accordingly.
As the level of Ta denotes the availability of a proces-

sor, a low value would decrease the number of available
processors for reallocation, but would guarantee their
capacity to absorb additional load without becoming
overloaded. A high value, on the other hand, would in-
crease the chances of ®nding a suitable available proces-
sor for reallocation, but the available processor may not
have enough capacity to accept additional load. For
simulations like those considered in this study a value of
Ta between 0.80 and 0.85 appears to work well.
It is important to note the distinction between the two

thresholds, Tu and Ta. The point below which a processor
has capacity to accept additional work without becoming
overloaded is signi®ed by Ta. If Tu � Ta, it could happen
that any available processor Pj (pj < Ta � Tu), could be-
come overloaded the moment it accepts a single LP from
another processor. As signi®cant time is spent checking
for a suitable reallocation it is advisable to keep Ta < Tu.
Thus the di�erence is maintained to control unnecessary
checking.

2.2. Identi®cation phase: identifying LPs for reallocation

An important result from existing studies on task allo-
cation has been that simple dynamic load-sharing algo-
rithms generally achieve substantial performance
improvement over static algorithms (Livny and Melman,
1982; Eager et al., 1986; Mirchandaney et al., 1989). As
task allocation is done during run time, there is a need to
keep the dynamic scheme itself simple and e�cient. The
number of LPs is typically much greater than the number
of processors, so each processor will contain many LPs.
Only those LPs that have predecessor LPs on di�erent
processors, called beginning LPs, or successor LPs on
di�erent processors, called ending LPs, will be considered
for reallocation. This reduces the number of LPs to be
considered and helps maintain the structure of the logical
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system, implicitly reducing communication costs. Con-
sider the logical system of Fig. 1. Mapping 1 in Fig. 2
shows the initial mapping to a computer with two iden-
tical processors. Mappings 2 and 3 show the same logical
system with di�erent assignments. In Mapping 2, an
ending LP from P0 (LP8) has been moved to P1, and
hence the structure of the system and communication
pattern remain unaltered, while the same is not true for
Mapping 3. Here, communication has doubled (at least
in distance travelled by a message), and the structure of
the system is no longer maintained. Thus, it is probable
that Mapping 2 will reduce run time compared to Map-
ping 3.
The scheme followed in this phase is given in Algo-

rithm 1. At each step, beginning and ending LPs are
moved from the critical processor Pj to an available
neighboring processor (discussed below). The algorithm
terminates when the critical processors's performance is
within available threshold limits, or there are no more
assignments possible.

2.3. Location phase: identifying processors to which LPs
are reallocated

This phase identi®es the processors to which LPs from the
identi®cation phase are reallocated.
To reinforce the identi®cation phase strategy of the

previous section, those processors that contain the pre-
decessors of beginning LPs or successors of ending LPs
identi®ed for reallocation will be chosen ®rst. Such pro-
cessors are called neighboring processors. Speci®cally, in
this phase the ®rst available neighboring processor is
chosen. This strategy is illustrated in Fig. 2. Mapping 5
shows the initial mapping of the earlier logical system to a
computer with three identical processors. In Mapping 6
an ending LP, LP4, has been moved to the neighboring
processor P1. The communication pattern and structure
remain una�ected. In Mapping 7, LP4 has instead been
moved to P2, increasing communication costs among
processors.
Thus, the following strategy is considered in the loca-

tion phase: Move the LPs (from Pj) identi®ed in the
identi®cation phase to an available processor Pk. If
p1

k < Tu, the allocation is kept, otherwise a new allocation
is sought. The quantity p1

k is the predicted threshold of Pk
under the proposed allocation. As shown in Shanker
et al. (1993), p1

k can be estimated from observed data
under the assumption that the simulation at any point
will behave like its recent past. That is, the arrival rate of
messages between LPs and the service rate of messages at
LPs will remain una�ected by a di�erent allocation.
While this assumption could be violated in many in-
stances, p1

k can still be estimated satisfactorily for pur-
poses of choosing an alternative assignment (Shanker
et al., 1993). The scheme followed in the location phase is
given in Algorithm 1.

Algorithm 1

=�Assumption: Pj is the critical processor�=

=�end LP refers to either a beginning or an ending LP�=

if �pj > Tu� then =�overloaded processor�=

for each end LP LPi 2 Pj DO

move LPi to available neighboring processor Pk

=�neighboring processors that are also generating

processors are considered last�=

evaluate p1
k

if p1
k < Tu then

keep allocation

endif

until ��pj < Ta� or (no more end LPs)]

else if �pj < Tl� then =�underloaded processor�=

for each end LP LPi 2 Pj DO

move LPi to available neighboring processor Pk

evaluate p1
k

if p1
k < Tu then

keep allocation

endif

until ��pj � 0� or (no more end LPs)]

endif

The purpose of seeking a new allocation is to improve the
departure rate of messages from the system. While the
above scheme does not guarantee that ds will always in-
crease, it is possible it may, especially when the strategy of
moving beginning and ending LPs is coupled with the
strategy of assigning LPs to neighboring processors. To
understand why, consider the following examples:

Example 1. Consider the two di�erent assignments
shown in Mappings 1 and 2 in Fig. 2. For illustration
purposes, assume that P0 under Mapping 1 is an over-
loaded critical processor (p0 > Tu). The objective is
to improve the departure rate ds by reallocating LPs from
P0. Let k1j and l1

j denote the arrival and service
rates, respectively, of messages to Pj under a di�erent
assignment.
Consider the new assignment in Mapping 2. Here LP8

(an ending LP) has been moved from P0 to P1. Therefore,
the load at P1 has increased, causing the service rate to
decrease there, i.e., l1 � l1

1. At the same time, processor
P0's service rate has increased (l1

0 � l0). As
p0�� k0=l0� > Tu and d0 � minfk0;l0g, it is possible that
since l1

0 � l0, the departure rate d10 under the new map-
ping has also increased (d10 � d0). Assuming negligible
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Fig. 2. Mappings 1±7.
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communication times, k11 � k1, as the departure rate from
P0 will be the arrival rate into P1. The reallocation has
increased the arrival rate of messages to P1, and at the
same time decreased the service rate there.
A mapping would have been considered in the ®rst

place only if P1 were an available processor. Therefore,
since p1 < Ta < 1 and d1 � minfk1; l1g, the departure
rate from P1 is limited by the arrival rate. Under the new
mapping, k11 � k1, and l1

1 � l1. But, as long as k11 < l1
1,

the departure rate from P1 under the new allocation is
limited by the arrival rate. As an allocation is kept only if
p1
1 < Tu < 1, the arrival rate will continue to be the lim-

iting factor. Since k11 � k1, the departure rate d11 � d1. The
reallocation has potentially increased the departure rate.

Example 2. As a di�erent example, consider Mappings 1
and 4 (Fig. 2). Now let P1 be an overloaded processor
and P0 an available processor in Mapping 1. In Mapping
4, a beginning LP from P1 has been moved to P0. By
moving LP5 to P0, the service rate at P0 has decreased,
but the arrival rate is una�ected because LP5 is not a
beginning LP on P0. As long as p1

0 < Tu the arrival rate is
still the limiting factor for the departure rate at P0, but
now P1, by reducing its load, has increased its service rate
without signi®cantly a�ecting the run time of the system.
While an increase in departure rate is not always assured,
the above strategy inherently balances the system such
that each processor receives only as much work as it can
process e�ciently (by controlling Tu). If an increase in the
departure rate must be guaranteed each time a realloca-
tion is done, we would have to calculate d1j , 8 j, a time-
consuming process. As the departure rates are predicted
from observed values there is no way of determining the
accuracy of a prediction beforehand. Thus, the e�ort is
seldom worthwhile.
An alternative approach to reallocate load is to use the

fact that messages in a DS are generated internally. In a
DS, new messages originate at source LPs (for the logical
system of Fig. 1 the source LP would be LP1). The rate at
which these messages are generated depends on the as-
signment of LPs to processors. If a source LP is assigned
to an overloaded processor, the rate of message genera-
tion will be slow (assuming that a new message is gen-
erated only when the previous message has ®nished its
processing on that processor). Alternatively, if the source
LP resides on a relatively free processor, then the rate of
message generation could be high. Thus, processors
having source LPs, called generating processors, govern
the rate of message generation. As generating processors
usually remain stable (they adjust the arrival rate to
match their service capacity ± unless they also experience
arrivals from other processors, in which case they could
become unstable), they are handled di�erently. When a
reallocation is considered, even if a generating processor
is the ®rst available neighboring processor, LPs are real-
located to them only as a last resort, as a reallocation will

reduce the rate at which new messages are generated, and
hence will a�ect the overall load. This fact, coupled with
the earlier strategy of reallocating only to neighboring
processors, provides an e�ective way of reallocating load.

3. Experimental analysis

An experimental study evaluated the e�ect on run time of
using the dynamic scheme on tasks such as those found in
DS. The study considered three logical systems (Fig. 3)
that are based on systems used in previous studies (Shan-
ker et al., 1989; Shanker, 1990) and suitable for simulating
on the iPSC/2 Hypercube. The logical systems, by their
structures, also introduced di�erent degrees of di�culty in
®nding new assignments during the simulation. The ex-
perimental design included the following factors:

A: The scheme used: The performance of the dynamic
scheme was compared to a static strategy chosen to
achieve the best possible run time for the simula-
tion under the assumption that the initial load re-
mained unchanged. The static strategy was chosen
by performing exploratory experiments evaluating
di�erent assignments of LPs to processors under
initial load conditions.

B: Increase in load: This factor controlled the change
in processing time for a message at an LP, and was
considered at two levels. The processing time for a
message at all LPs was the same initially.

C: The time of load increase: This factor speci®ed the
number of messages that were executed before an

Fig. 3. Logical systems 1±3.
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increase in processing was required at an LP. This
was considered at two levels.

D: The location of load increase: While factors B and C
specify the amount and time of load increase, this
factor indicates the location of load increase. Spe-
ci®cally, the LP experiencing the load increase is
de®ned here. This also was considered at two levels.

In addition, the following factors might also a�ect the
performance of the schemes:

· Simulation run length: Technological constraints on
the message-bu�er space of the hypercube limited the
maximum simulation run length to between 900 to
5000 messages depending on the logical system.

· Frequency of reallocation requests: This speci®es the
sample size needed for making inferences about the
system state. Small sample sizes lead to a high fre-
quency of reallocation requests and system overhead,
but they also closely mirror the true conditions of the
system. Large sample sizes, have less overhead, but
are also less sensitive to system states. In our ex-
periments, the sample size varied from 400 to 1000
messages depending on the logical system.

· Threshold values: The values of Tu, Ta; and Tl were set
based on preliminary simulations done to study their
e�ect on performance. For the simulations like ours,
Tu ranged from 0.92 to 0.95, Ta was set at 0.85, and Tl

from 0.20 to 0.25. While ®nding the best values of the
parameters may be di�cult, for most simulations it is
relatively easy to determine good values if one has
some prior knowledge about the system. In addition,
for our stochastic simulations, as the load varies from
run-to-run, the threshold values tend to be robust ± a
range of values for the thresholds work well. In this
case the stochastic nature of the simulations is in fact
an advantage in determining appropriate threshold
values as it gives a wider latitude in setting them.

· Initial allocation: Assignment provided by the static
strategy mentioned earlier.

· Initial load value: This speci®es the initial amount of
computation required by each LP. Higher values
imply a greater computation time for a message at
that LP.

· Logical system: An important assumption made in
implementing the dynamic scheme is that ``future
observations resemble the recent past''. As discussed
in the following sections, this assumption is violated
when there is a strong dependency among LPs in a
system, as in closed networks. As such, all logical
systems considered here are open networks.

The experiments were conduced on an iPSC/2 Hyper-
cube, which is a distributed system of connected nodes.
Each node is a self-contained computer, and any infor-
mation to be shared between nodes is communicated via
messages through a high-speed network connecting the

nodes. These nodes are usually accessed from the outside
world by means of a host computer. The host could be
any computer system, e.g., a Unix workstation, and is
used as an interface between the user and the Hypercube.
Two di�erent sets of experiments were conducted, dif-

fering in how the Hypercube was used for dynamic real-
location. In the ®rst set of experiments, all calculations
pertaining to the scheme were done on the nodes. Here the
host computer was used only for starting and closing
the cube, i.e., to provide the user with feedback about the
simulation. In the second set of experiments, calculations
for determining a new allocation were done on the host
while the nodes continued simulating. This favors the
dynamic scheme as the overhead associated with calcu-
lating the reallocation is no longer present. It is important
to note that in both sets of experiments there is still the
overhead of actually implementing the reallocation. In all
cases a 24 full factorial design was used with the four
factors mentioned previously, and all data were generated
by using non-overlapping random-number streams. Each
experiment was replicated until statistically signi®cant
results were obtained at the 90% con®dence level.

4. Results

The results of the experiments, shown as a comparison
between the dynamic and static scheme, are in Tables 1,
and 2. There are two levels for each of the four design
factors A (Scheme), B (Load), C (Time), and D (Loca-
tion). As the results in Tables 1, and 2 are comparisons
between the performance of the dynamic and static
schemes (factor A), we have eight pairs of design points.
In the interest of brevity, complete treatment levels are
not described here, but speci®c levels will be mentioned
for illustration purposes. Further details may be found in
Shanker (1990).

4.1. Experiment 1: reallocation using only the nodes

The run time achieved by using the dynamic scheme was
in many cases substantially improved over those resulting

Table 1. Experiment 1: percent change in run time

Design point Logical system

1 2 3

1 )6.27 )23.69 0.41
2 )20.24 )26.62 0.20
3 )1.47 )33.51 )0.16
4 )16.67 )43.17 )0.07
5 6.56 )21.11 )49.70
6 9.13 )27.22 )35.82
7 5.87 )20.02 )33.55
8 6.35 )35.29 )30.24
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from the static scheme. Table 1 shows the percent change
in run time, 100� �d ÿ s�=s, where d and s are the average
run times observed when using the dynamic and static
schemes, respectively. For logical system 3 (LS3), the run
time improvement was between 0 and 50% using the
dynamic scheme, and for LS2 the improvement was be-
tween 20 and 44%. Though the improvement for LS1 was
not as great (Table 1), it was nevertheless signi®cant for
half the simulation runs (design points 1±4). In fact, in a
few cases for LS1, the dynamic scheme increased the av-
erage run time. There were two main reasons for this
increase: the topology of the logical system simulated,
and the strategy used for task allocation. The dynamic
scheme attempts to improve the run time by taking a
localized view of the problem. That is, tasks from pro-
cessor Pi are reallocated to Pj if that reallocation will
increase the net departure rate of messages from the
above two processors, without considering the e�ect on
the overall system. This strategy could fail when there is a
high degree of dependency among LPs (even if prece-
dence relationships are satis®ed immediately), as it is in
the pipelined topology of LS1. Here, any change in pro-
cessing at LPi has an immediate and signi®cant e�ect on
LPs downstream, and observations collected in the recent
past may not accurately re¯ect future values under a
di�erent assignment. Thus, a reallocation may merely
shift the bottleneck process rather than eliminate it. This
was exactly the case for design points 5±8 where LP12 was
transferred to P3 during the simulation. Here, the bot-
tleneck process shifted from P2 to P3 (the Hypercube had
four available processors), and as such no reduction in
run time was observed.

The other factor that hindered performance of the
dynamic scheme for LS1 was that the initial allocation
was a balanced load across the processors (this allocation
provided the best run time under initial conditions of the
simulation). Thus, any change in load at an LP has an
immediate e�ect on performance. For such systems, if an
improvement in run time is sought when load changes,
the load needs to be balanced again across the system.
This may not always be possible as LPs, and not indi-
vidual messages, are being reallocated. An alternative
approach to balancing the load is to lower the overall
load in the system, thereby eliminating the bottleneck,
rather than shifting the bottleneck. This is done by re-
ducing the rate at which new messages are generated. This
approach is illustrated in Fig. 4 for LS1, showing on the
left the arrival and service rates in LS1 under the initial
allocation. The rates were calculated using the algorithm
given in Shanker et al. (1993) and an initial load value of
15. For example, consider the calculation of the rates for
P0 under the initial allocation. As each new message
generated in P0 is executed at all four LPs there, the total
average execution time incurred by a message in P0 is
w0 � 60. Assuming that a new message is generated at
LP1 only when no other messages in P0 require process-
ing, k0 � l0 � 1=60. Then, using ( 2), an estimate of d0 is
1=60. During the simulation, the load at LP6 changed to
29. The e�ect of this is shown in the center of Fig. 4.
The dynamic strategy then moved LP5 to P0 to ``bal-
ance'' the load in the system. As P0 is a generating pro-
cessor, the overall load in the system changes. This e�ect
is shown on the right in Fig. 4, where now the bottleneck
has been removed from the system by altering the overall

Table 2. Experiment 1: average thresholds and deviations in load

Design point Logical system 1 Logical system 2 Logical system 3

Dynamic Static Dynamic Static Dynamic Static

A: Average thresholds
1 0.7578 0.6846 0.5602 0.5902 0.7333 0.7329
2 0.7694 0.6852 0.5934 0.6123 0.7509 0.7487
3 0.7571 0.6890 0.5517 0.5910 0.7359 0.7298
4 0.7674 0.6882 0.5699 0.6136 0.7494 0.7413
5 0.7638 0.7703 0.5473 0.5900 0.7454 0.7252
6 0.7686 0.7689 0.5344 0.6125 0.7376 0.7122
7 0.7647 0.7696 0.5555 0.5909 0.7552 0.7360
8 0.7691 0.7706 0.5350 0.6137 0.7589 0.7244

B: Average deviations in load
1 0.0374 0.0734 0.0681 0.0751 0.0405 0.0404
2 0.0210 0.0828 0.0405 0.0982 0.0405 0.0407
3 0.0453 0.0710 0.0213 0.0760 0.0403 0.0407
4 0.0251 0.0852 0.0537 0.0985 0.0406 0.0404
5 0.0131 0.0110 0.0483 0.0758 0.0227 0.0561
6 0.0187 0.0169 0.0265 0.0982 0.0261 0.0502
7 0.0135 0.0116 0.0569 0.0758 0.0234 0.0629
8 0.0157 0.0150 0.0298 0.0986 0.0252 0.0566
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rate at which messages are generated. While this strategy
removes the bottleneck, ds also decreases. But in many
cases the bottleneck caused by a full bu�er leads to

unpredictable run times. While this does not necessarily
imply longer run times, from limited experiments it
appears to be so. The success of this strategy therefore

Fig. 4. Expected arrival and service rates for LS1.
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depends on the overhead involved in resolving a full
bu�er.
The di�erence in the performance of the dynamic

scheme on logical systems with less dependency among
LPs than LS1 can be seen readily by considering LS2 and
LS3. For LS2, the dynamic scheme does better than the
static scheme in all cases, and for LS3, in 50% of the
cases. In no case does the dynamic scheme perform worse
than the static scheme (Table 1). In addition to the fact
that the LPs are less dependent in LS2 and LS3 than in
LS1, the initial assignment is also not as well balanced as
it was for LS1. Thus, processors are able to absorb small
changes in load without becoming overloaded. This can
be seen by considering LS3. When load changes at LP5

the dynamic scheme does not consider a new allocation.
As only about 60% of all messages pass through LP5

(Fig. 3), small increases in load will have minimal e�ect
on performance. But, when load changes at LP20, there is
a greater e�ect. This is because nearly 75% of all mes-
sages pass through LP20.
Table 2A shows the estimated average threshold val-

ues, i.e., an estimate of message utilization p, for the three
logical systems. If pik

j is the estimated threshold value for
Pj at the end of run i for design point k, then the average
threshold value �pk �Pdÿ1

j�0 �pk
j=d, where �pk

j �
PNk

i�1 pik
j =Nk,

and Nk is the number of replications at design point k.
Unlike utilization, pik

j is calculated for only as long as
messages are arriving or being processed, and any idle
time at the end of the simulation for a processor (when
other processors are still working) is not taken into ac-
count. Thus, pj represents the utilization as long as
messages are being processed. For LS1 and LS3 (Ta-
ble 2A) the average threshold tends to be higher for the
dynamic scheme, but for LS2, not only did the dynamic
scheme have a lower average threshold, but the balance of
load among processors, i.e., the deviation (variance) in
threshold values among processors, is lower while using
the dynamic scheme (Table 2B). This suggests that the
dynamic scheme lowers the run time by using the pro-
cessors more e�ciently and is therefore able to absorb a
greater degree of load change in the system. In general,
for all logical systems the dynamic scheme achieved a
better balance of load among the processors, leading to a
lower run time when compared to the static strategy.

4.2. Experiment 2: reallocation using the host

Another set of experiments was conducted to determine
the e�ectiveness of using the dynamic scheme when the
host, instead of the nodes, was used for calculating the
new assignment. Though the factors were the same as in
the previous experiment they were considered at di�erent
levels, and only LS1 and LS2 were simulated (Shanker
et al., 1993).
The results from this study are similar to the previous

one. Again the dynamic scheme did better, or at least as

well, in all cases compared to the static scheme. One
di�erence from the previous study was in the pattern
observed for average threshold and deviation in load
among processors for LS1. For points 1±4, the dynamic
scheme achieved a lower average threshold value in
contrast to the previous experiment. Also, while the
average deviation in load among processors was clearly
lower for the dynamic scheme in the previous experi-
ment (Table 2B), no such pattern could be detected
here. Unlike the earlier experiment, load was not always
reallocated by moving LPs to a generating processor.
This was re¯ected in lower threshold values for the
dynamic scheme, and is similar to the results observed
for logical system 2 where load is usually reallocated to
processors other than generating processors leading to
lower threshold values for the dynamic scheme. As no
reallocation was done at design points 5±8 there was not
much di�erence in either the average threshold or de-
viation values between the static and dynamic scheme
for LS1. Even though a lower run time was achieved by
the dynamic scheme for LS1 by moving LPs to proces-
sors other than the generating processor, it could be that
the bottleneck has only been shifted, and not removed, a
symptom possibly masked by the small run length. Thus
if the simulation had continued, a reallocation to a
generating processor may have been necessary to reduce
the run time. This would also explain the discrepancy in
the pattern observed for the two experiments. Again,
such problems are more likely to occur in systems like
LS1 where the dependency among LPs is high.
For LS2, the results mirrored those of the earlier ex-

periment. The run time with the scheme was lower in all
cases, and so were the average threshold values. In ad-
dition, the dynamic scheme achieved a better balance of
load among processors, supporting the contention that
the scheme uses the processors more e�ciently.

4.3. Experiment 3: e�ect of system characteristics
on run time

The above experiments show that the dynamic scheme
was often e�ective in reducing run time, and generally
the scheme with a lower deviation in load among pro-
cessors led to the lower run time. This supports earlier
studies where the variance of load distribution among
processors has been used as the minimization measure
(Lu and Carey, 1986). At face value, this implies that
regardless of the problem and the computer it is better
to distribute the load uniformly across the available
processors. This would not be correct since the number
of processors used should depend on the logical system
as well as the computer. The following experiment
shows us an intuitive way of assigning load along these
lines.
LS1 was considered. The average execution time (esti-

mated through preliminary experiments) for a message on
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all LPs was the same and �0:325 ms. The communica-
tion time between processors was empirically estimated to
be �3 ms. Five di�erent static assignments were consid-
ered (Table 3). In each assignment, except one, 2-UB (2
processors, unbalanced load), the LPs were distributed
uniformly over the available processors. In 2-UB, the LPs
are allocated so that the bottleneck (the most utilized
resource) occurs at the processors and not in the com-
munication channels, while in 2-B (2 processors, balanced
load), 4 and 8, the bottleneck is in the communication
channels, a result of distributing the load uniformly.
Speci®cally, in 2-UB, LPs are allocated to P0 until
d0 �1=f, where f is the expected communication time
between processors. The remaining LPs are then assigned
to P1. The primary interest was to determine the relative
performance of the above allocations.
In the ®rst set of experiments the simulation was run

for 800 messages. The results are given in Table 4.
Clearly 2-UB is the best allocation. Consider the simu-
lation under assignment 2-B. Here P0 sends messages to
the communication channel at a faster rate than it can
handle, and hence the I/O bu�er becomes full. When
this happens, P0 stops its processing and waits for the
bu�er to clear before continuing, thus wasting time. This
situation arises when using 4 and 8 processors also be-
cause d0 > 1=f. But in 2-UB, P0 executes messages at a
rate comparable to the communication rate between
processors, and under such circumstances no time is lost
because of a full bu�er. Note that, because of the logical
structure and mappings considered the bottleneck will
either be at P0 or in the communication channel from P0

to P1, and hence the results can be explained with ref-
erence to d0 and f.
The implications of choosing the appropriate number

of processors for a system with limited I/O space can be

demonstrated even more emphatically by increasing the
run length to 2000 messages, and hence increasing the
chance of ®lling up the I/O bu�er. Now there is a sharp
decrease in the departure rate of messages for assign-
ments 2-B, 4, and 8, while the results for 2-UB and 1 are
comparable to the previous experiment. Therefore, when
communication time is signi®cant, a balanced load may
not always lead to the best run time, and even if the
load is balanced it is essential that a proper subset of
processors be chosen for the assignment. One intuitive
way of assigning LPs is to balance the departure rate of
messages from the processor to the communication rate
so that the impact of limited I/O space is neutralized.
The dynamic scheme tries to do just this. In the earlier
experiments in Section 4.1, a balanced load generally led
to a lower run time because the simulations were coarse-
grained, and hence communication was not the bottle-
neck.
All simulations considered in Sections 4.1 and 4.2 ex-

perience an increase in load, and the results show that
even for small increases in load it is cost-e�ective to use
the dynamic scheme. The percent overhead ([reallocation
cost / run time] � 100) in implementing the dynamic
scheme for the three simulations of Section 4.1 is shown
in Table 5, which also shows the overhead of the dy-
namic scheme when the simulations of LS2 experience no
increase in load. Clearly, the overhead in all cases is quite
low. The overhead in using the scheme is less than 4%,
while the potential improvement could be as high as 44%
(see Table 1). In addition, in most simulations it would be
di�cult to determine the best static assignment a-priori,
as has been done for the experiments of Sections 4.1 and
4.2, and in such cases it may be cost-e�ective to use the
dynamic scheme to smooth out the load during the sim-
ulation. In addition to the di�erent factor levels chosen in
Section 4.2 (compared to those in Section 4.1), the results
in Table 5 could also explain why no signi®cant bene®t
was derived from calculating the new assignment on the
host in Section 4.2 when compared to the experiments
performed only on the nodes.

Table 3. Approximate values for d0 (1=f � 0:3333)

Assignment Available processors d0

1 P0 0.1923
2-B P0, P1 0.3846
2-UB P0, P1 0.3419
4 P0 ) P3 0.7692
8 P0 ) P7 1.5385

Table 4. Average departure rate of messages from the system

Number of processors Average departure rate

800 messages 2000 messages

1 0.1955 0.1992
2-B (balanced load) 0.2484 0.1149
2-UB (unbalanced load) 0.2933 0.3019
4 0.2373 0.1173
8 0.1331 0.0836

Table 5. Percent overhead

Design point Logical system

1 2 3 2 (no load)

1 1.190 2.381 0.097 1.735
2 1.330 3.750 0.093 1.700
3 1.135 2.536 0.090 1.735
4 1.387 3.764 0.104 1.768
5 1.419 2.049 0.071 1.692
6 1.239 2.844 0.078 1.840
7 1.455 1.859 0.089 1.753
8 1.322 2.612 0.129 1.778
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5. Limitations

From the experiments of the previous section, it is clear
that the dynamic scheme often proved superior to the
static strategy. But many characteristics can be identi®ed
that a�ect the performance of the scheme. A few are
discussed below.
The dynamic strategy uses a localized approach to task

allocation. That is, LPs from processor Pi are reallocated
to Pj if that reallocation will increase the net departure
rate of messages from the above two processors, without
considering the e�ect on the overall system. As seen in
Section 4, this strategy sometimes leads to ine�cient al-
locations for LS1 (Fig. 3), where there is a high degree of
dependency among the LPs. But, as dynamic task allo-
cation is based on observed values, and involves signi®-
cant cost during the simulation, a more globalized
approach would require greater e�ciency to remain cost
e�ective.
A related aspect is the assumption that future obser-

vations will behave like the recent past. This assumption
is the basis under which a new allocation is calculated by
the dynamic scheme. When future values are signi®cantly
a�ected by a new allocation, the dynamic scheme, partly
because of its localized approach, is likely to perform
poorly. From our experiments, these situations occur in
well-structured systems like LS1 (Fig. 3), or when there
are immediate feedback loops at an LP. This assumption,
because of the cyclic dependency among LPs, is also
usually violated in closed networks. While it is possible to
modify the scheme to account for such situations, it is
likely to increase the overhead signi®cantly. And even
then, a better allocation cannot be guaranteed as future
values will still be predicted from values observed in the
past.
Another factor a�ecting performance is the setting of

threshold values Tu , Ta; and Tl. For the simulations in this
paper, the threshold values were set based on preliminary
experiments, and remained ®xed for the duration of the
simulation. While a range of values worked well in our
experiments, it may be di�cult to ®nd the best values for
all simulations. An alternative approach is to view the
thresholds as variables, with their values de®ned as a
function of the system's state. For example, Tu could be a
function of the overall load. If the load on all processors
was high, it might be better to keep Tu high to prevent
unnecessary calculations (as there would be no available
processors, and therefore no reallocation would be done).
While this strategy has obvious advantages, determining
a suitable function for the thresholds may be di�cult.
Further research is needed for choosing appropriate
values before simulations can be run e�ciently in a
manner transparent to the end user.
Another aspect that a�ects performance is the han-

dling of precedence relationships among LPs. Currently,
the scheme can recognize when messages are spending

excessive time waiting in queue, thus implying that
precedence relationships are not being satis®ed, but has
no provision to correct the situation directly. Precedence
relationships among LPs can be represented by a net-
work of queues with multiple arrival streams. For ex-
ample, consider the logical system in Fig. 1. Using the
Bryant/Chandy/Misra model, messages will be chosen
by LP9 from the two channels, i.e., from the channels
from LP7 and LP8 to LP9, based on the timestamp of
messages. Thus the precedence relationship at LP9 can
be modelled as a single-server system with two arrival
streams. The queue discipline there is dictated by the
timestamp of messages arriving in the two channels, as
the server (LP9) will always pick the message with the
smallest timestamp. The problem is in predicting the
throughput for such systems. While limited results exist
(Kumar and Shorey, 1994), to our knowledge no results
yet exist for systems with multiple general arrival
streams and general service discipline (i.e.,

P
GI/G/1

systems), and queue disciplines de®ned by precedence
relationships like those in DS. Thus, while it is easy to
recognize when precedence relationships are not being
satis®ed, it is di�cult to correct them as the e�ect of a
reallocation on precedence relationships cannot as yet be
predicted accurately.

6. Conclusions

While TAPs in distributed systems have been studied
extensively, as mentioned earlier, most problems make
assumptions that limit their utility to DS. Thus, solutions
developed in other ®elds are usually unsuitable (in terms
of reducing run time) for task allocation in DS. Also,
while some work has been done in the area of dynamic
task allocation for DS (Nicol and Reynolds, 1985; Reiher
and Je�erson, 1990), most modelers generally rely on
guesswork to determine a good allocation, and that too a
static one.
This paper establishes the feasibility, and in some cases

the necessity, of using dynamic task allocation in DS, and
provides an intuitive and simple way of reallocating load
during the simulation to reduce its run time. More im-
portantly, the implications of this research could lie in its
potential application to TAPs in other domains. For ex-
ample, by modeling the manufacturing environment
mentioned in Section 1 as a distributed simulation, it is
possible to evaluate the e�ect of the dynamic scheme on
throughput. While the manufacturing model is more
complex than the examples here, our results may never-
theless hold. From a practical standpoint, for the success
of the scheme we need to assume that observations col-
lected in the recent past represent the near-term future.
While this appears to be overly restrictive, the predictions
of a potential assignment of LPs to processors can be
made robust to moderate departures from the above
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assumption. Thus, unless there is a strong dependency
among LPs, thereby possibly severely violating the as-
sumption, the dynamic scheme is likely to do well.
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