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Abstract

Frontier regression models seek to model and estimate best rather than average values of a response variable. Our

proposed frontier model has similar intent, but also allows for an additional error term. The composed error approach

uses the sum of two error terms, one an inefficiency error and the other as white noise. Previous research proposed

assumptions on the distributions of the error components so that the distribution of this total error can be specified.

Here we propose a distribution free approach to specifying these errors. In addition, our approach is completely data

driven, rendering model specification an unnecessary step. We also outline, step-by-step, an approach to implementing

this procedure. Our entire approach is illustrated with a mutual fund data set from the Morning Star database.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Frontier regression models seek to model and

estimate the best rather than average values of re-

sponse variables. Here we develop a model with
similar intent, but also allow for an additional error

term. In our model, the composed error term is

separated into two components. The first, a non-

negative error that represents inefficiency, or short-
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fall from ideal performance, and second, a white

noise error term. Such approaches are desirable

from the perspective of modeling observed perfor-

mances. For example, with mutual funds, we can

now distinguish between performance due to luck,
the white noise error, and that due to performance

ability, represented by the inefficiency error term.

Models to estimate the best response values have

been proposed in the literature. For example,

Aigner and Chu (1968) proposed a Cobb–Douglas

function as a frontier model to fit firms’ level data

on production levels and factors. The parameter

values, estimated using mathematical program-
ming, were later shown to be maximum likelihood

estimates (MLE) under some restrictive
ed.
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assumptions, specifically, that the errors were
independent and identically distributed from the

half-normal distribution. A modification of this

model was considered by Meeusen and Van Den

Broeck (1977) and Aigner et al. (1977). Here, actual

performance is modeled as the frontier model plus

an error term composed of two parts. The first error

term is assumed to be normally distributed with

mean zero, often described as accounting for
uncertainty in the frontier model. The second error

term is a nonnegative one representing a measure of

inefficiency error or deviation from the efficient

frontier. This term is also called the inefficiency ef-

fect in Coelli et al. (1998). The Aigner et al. (1977)

method assumes that such nonnegative inefficien-

cies are distributed as half-normal. Stevenson

(1980) extended the method to permit assumption
of truncated normal and gamma distributions.

Another approach was proposed by Green (1990).

It assumes a gamma distribution for the inefficiency

error terms. However, Ritter and L�eopold (1997)

have found that such models are difficult to estimate

accurately. Recently, Van Den Broeck et al. (1994)

have considered Bayesian models. These models

require a large number of assumptions such as the
form of the likelihood function and a choice of prior

distribution for the estimated parameters.

The model proposed in this paper does not re-

quire any distributional assumptions on the errors.

Our approach, based on mathematical program-

ming, is distribution free and totally data driven.

We show that meaningful parameter estimates can

be derived without having to make restrictive dis-
tributional assumptions.

The rest of the paper is organized as follows.

The next section explores the MLE principle for

estimation of these two errors. We show that the

likelihood function is U-shaped and is unbounded

at solutions corresponding to a pure frontier

solution, and to an ordinary least squares (OLS)

regression solution. Thus, the MLE principle does
not yield a meaningful solution to our problem,

thereby providing a rationale to consider different

approaches to parameter estimation. We then

present our model in Section 3, followed by our

data driven procedure to estimate parameter val-

ues in Section 4. Experimental results are in Sec-

tion 5, followed by conclusions in Section 6.
2. Maximum likelihood estimation

The general composed error frontier estimation

model can be written as

yj ¼ f ðxj; hÞ þ ej � xj; ð1Þ
where for j ¼ 1; . . . ; n, yj is a measurement on a

dependent variable, xj is a vector of measurements

on independent variables in Rm, h is a vector of
model parameters in Rp, ej is a white noise error

term with variance r2, and xj is a nonnegative

inefficiency error for observation j, independent of
ej. f ðxj; hÞ is a ‘‘ceiling’’ type frontier model––that

is, observations without other errors will fall be-

neath the level given by the ceiling model. A

‘‘floor’’ model is the opposite, and model specifi-

cation becomes

yj ¼ f ðxj; hÞ þ ej þ xj: ð2Þ
If the ej’s are set to zero then the resulting model is

called the pure frontier model. If the xj are set to

zero then the resulting model is called the pure

OLS model.

We claim first that no MLE estimates of the

parameters of this model are possible. More pre-

cisely, the likelihood function is unbounded at two
distinct sets of parameter values, namely, those

corresponding to the pure frontier and pure OLS

solutions, respectively. Consider, for example, the

case for which the xj’s are considered to be

exponentially distributed with density

fxðxÞ ¼ l expð�lxÞ: ð3Þ
The maximum likelihood estimation problem for

the ceiling model may be written as

PL :

Max Pj
1

r
ffiffiffiffiffiffi
2p
p

� �
exp

�e2j
2r2

 !( )
fPjl expð�lxjÞg

ð4Þ
s:t:

yj ¼ f ðxj; hÞ þ ej � xj for all j; ð5Þ
xj P 0 for all j;X
j

ej ¼ 0;

r2 > 0;

l > 0:
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We note that for any feasible ej and xj, the
conditionally optimal values of r2 and l are

known from the elementary MLE results for the

two densities in question. Namely, we have

r�2 ¼ 1

N � 1

X
j

e2j and l� ¼ NP
j xj

: ð6Þ

Then the objective function in (4) can be rewritten

as

r�N ð2pÞ�N=2
exp

 
�
X
j

e2j=2r
2

!
lN

� exp

 
� l

X
j

xj

!
: ð7Þ

Substitution of (6) into (7) yields the simplified

result

ð2pÞ�N=2

P
j e

2
j

N � 1

" #�N=2

� exp
�ðN � 1Þ

2

� �
NP
j xj

" #N
expð�NÞ: ð8Þ

Neglecting constant terms in the simplified objec-

tive function, the revised estimation problem be-
comes

PLS :

Max
X
j

e2j

" #�N=2 X
j

xj

" #�N
ð9Þ

s:t:

yj ¼ f xj; h
� �

þ ej � xj for all j;

xj P 0 for all j;X
j

ej ¼ 0: ð10Þ

Assume for simplicity that f ðxj; hÞ has range all
of R as h is varied. This is the case, for example,

with linear regression models. Let
P

j e
2
j ¼ d and

consider the case of d! 0. The first term of (9) has
as infinite limit in that case due to the negative

exponent. Furthermore, the corresponding xj

must tend to those of the pure frontier model and
give a finite limiting value to the second term of
(9). It follows that as d! 0, the value of (9) tends

to infinity. Similarly, considering
P

j xj ¼ d! 0,

shows that the corresponding ej tend to the pure

OLS solution and that the value of (9) tends to

infinity, as in the first case.

Thus, the likelihood function in (9) is U-shaped,

being unbounded at each extreme pure solution

case. Hence, a unique bounded MLE solution does
not exist for this problem. It is easily seen that the

assumption of the exponential density for the xj is

not critical to the argument so that the same result

is expected for other density assumptions.

One interpretation of the foregoing discussion is

that such composed error models, while intuitively

attractive, are not estimable based on the maxi-

mum likelihood criterion. That is, given any sets of
feasible error terms of the above types, their like-

lihood will be dominated by solutions for which

one of the sets of errors is identically zero. This

suggests that with respect to likelihood, both a

pure frontier model and a pure OLS model will

dominate other feasible composed error models.

The result would appear to suggest that the model

builder should decide to use precisely one or the
other of the pure frontier or pure OLS models.

However, since both their likelihoods are un-

bounded, a choice cannot be made on that basis.

Ritter and L�eopold (1997) have studied the

estimation of normal-gamma composed error

models and noted several difficulties with their

accurate estimation. In view of the foregoing dis-

cussion, such difficulties might be expected. More
generally, previous likelihood based studies in this

area may possibly have obtained only relative

maxima solutions of some kind.

Thus, it appears that composed error models

are not estimable in the maximum likelihood

sense. Nevertheless, they are intuitively compel-

ling. In most cases the dependent variable values

are likely to have at least some measurement error.
Moreover, when the dependent variable values are

performance results, common experience suggests

that performance often involves both chance or

luck variations as modeled by ej, and skill or

performance variations as modeled by xj. As

noted earlier, the white noise error components are

often described as representing uncertainty in the
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model form. Here we are employing a different
interpretation. Namely, we assume these represent

a chance component of performance; while the

nonnegative errors represent the variation due to

purposeful attempts at ideal performance. Most

importantly, the predictive ability of such models

may vary depending on the level of the white noise

component being assumed. Hence, it is desirable to

propose a reasonable remedial approach for this
class of models. In the next section, we develop an

application to model mutual funds performances.

An estimation procedure is proposed that permits

separate estimates of the two kinds of error com-

ponents rather than their sum.
3. Application to mutual fund data

Indro et al. (1999) provided theoretical argu-

ment and empirical evidence for the relationship

between mutual fund size and fund returns. A

sample of 683 nonindexed, actively managed US

equity funds was obtained from the Morningstar’s

Mutual Funds OnDisc in the 1993–1995 period.

Results showed a curvilinear relationship between
size and returns. Funds have to exceed a certain

size in order to efficiently cover the cost of infor-

mation. Yet, the marginal returns diminished and

became negative as the fund exceeds an optimal

fund size.

The same data set is used in this study to

illustrate how the frontier model approach can be

used to estimate the relationship between returns
and fund size. Fund size is typically measured as

the net assets amount. The three-year average for

the sample is $843.6 million with a standard

deviation of $1,869.28 million. The natural loga-

rithm of month-end net assets under management

is used in this study. The mutual funds in our

sample achieved a 13.40% average annual return

for the three years (standard deviation¼ 5.36%) as
compared to average return on the S&P 500 of

15.28%. The optimal fund size according to Indro

et al. (1999) was between $946 million and $1.1

billion of net assets.

We now construct a frontier model for the

foregoing mutual fund data. Our model is based

on the following:
Observed performance

¼ Predicted optimal performance ðfrontierÞ
þmodel and other random error

� performance shortfall for the observed period:

Let

d� ideal fund size for managing funds in the

chosen category,

k model parameter, kP 0,

y� expected optimal relative performance

measure for funds in the chosen category

if operated at ideal size, d�,
ej normally distributed mean zero, error

term reflecting model error and errors

from all other sources except managerial

efficiency/inefficiency relative to the esti-

mated frontier model,

xj nonnegative underachievement of ideal

performance for mutual fund (MF) j-dis-
tribution assumption discussed below,

dj actual fund size in net assets for MF j.

Thus, the frontier model can be written as:

yj ¼ f ðxj; hÞ þ ej � xj

¼ y� � kðd� � djÞ2 þ ej � xj; ð11Þ

where the non-linear model f ðxj; hÞ represents the
predicted optimal performance. In our mutual

fund example, the xj’s are the dj’s, and h has three

non-negative components: h1 ¼ y�, h2 ¼ k, and

h3 ¼ d�. We now consider how to estimate the

parameters and residuals for this model without
additional distributional assumptions on the latter.

3.1. Frontier estimation given d�

We will solve model (11) by providing estimates

for d�. We assume that m ¼ minðdjÞ6 d�6
maxðdjÞ ¼ M . That is, we believe that ideal fund

size is in the interval of actually observed fund
sizes (net assets). So we break up the interval

½m;M � into, say, n steps and solve each problem

with a trial value of d� given by these steps. For a

given such d� value, say, d, then the mutual fund

model of (11) becomes:

yj ¼ y� � kðd � djÞ2 þ ej � xj: ð12Þ
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Given d�, this model is linear in the parameters y�

and k, except that we must enforce their nonneg-

ativities.
4. Procedure

Let d� denote the ideal fund size. To generate

potential solutions to Model (12), we consider the

revised model below:

min k
X
j

e2j þ ð1� kÞ
X
j

x2
j ð13Þ

s:t:

yj ¼ y� � kðd� � djÞ2 þ ej � xj for all j;

xj P 0 for all j;X
j

ej ¼ 0;

y�; kP 0:

Model (13) uses k as a parameter to generate

potential solutions for a fixed fund size. When k is

near zero, then all effort is placed on minimizing

the sum of the x2 errors. When k is near unity, all

effort is focused on minimizing the sum of the

squared white noise error terms. Thus, a range of
intermediate possible solutions is generated as k
ranges from zero to unity. It should be observed

that this model requires k to be at least positive.

That is, k ¼ 0 cannot be permitted in this model. If

k ¼ 0, then the second term in Model (13) might be

made smaller than that of the pure frontier model

by an appropriate adjustment of the e terms, which

would be essentially unrestricted in that case. For
similar reasons, we restrict k to be strictly less than

1. As such, we consider k 2 ð0; 1Þ. As we average

three years of performance data to produce the

observation for each fund, the dependence is only

on subscript j.
As the values of d� and k need to be specified

before solving Model (13), we proceed as follows:

1. We first randomly divide our dataset into two

equal parts A and B. Initially, let A be the train-

ing set, and B be the test set.

2. Let n be the predetermined number of d� values
that we would like to consider. Initially, set
d� ¼ minðdjÞ, where dj is a fund size observed

in the training set. Subsequent values of d� are
then determined as d�  d� þ drange

n , where drange
represents the range of fund sizes in the training

set.

3. For each of the values of d�, solve Model (13)

by varying the value of k from 0 to 1.

4. For each trial combination of d� and k, apply
the results of the model solution on the test

set and calculate the average residual. Specifi-

cally, For a particular trial l, let �el and �xl rep-

resent the average values of the e and x from

the model solution. Then, for each fund i in

the test set, calculate the residual as follows:

Ril ¼ yi
�
� ðy� � kðd� � diÞ2 þ el � xlÞ

�2
;

Rl ¼
P

i Ril

N
;

ð14Þ
where it is assumed that the values of y�; k, and
d� are those specific for iteration l, and N is the
test sample size.

5. The ideal value of the fund size is then the solu-

tion that produces the smallest average residual

minðRlÞ. The Ril squared residuals may be inter-

preted as follows. From the solution on the

training set, the best prediction for a hold-out

sample MF would be based on the mean resid-

ual. Thus the best prediction would be given by
the inside parenthetical expression in (14).

Hence, the Ril give the squared residuals be-

tween that prediction and a given hold-out

MF i. Thus the criterion we propose is to

choose that solution for which the average

squared hold-out sample error is as small as

possible.

6. As validation, repeat steps 2–5 by reversing the
training and test sets. That is, now B is the

training set, and A the test set.

It is important to emphasize that the optimi-

zation of the objective function in (13) does not

extend over k. The parameter k is used to generate

different allocations between the white noise errors

and the inefficiencies. Thus the optimal value of k
is not determined from the programming problem

at (13). Instead, as different sets of solutions of (13)



Table 1

Optimal sizes, and minimum test residuals

Training set A, test set B Training set B, test set A

d� R d� R

0.51083 28.862 0.03279 26.826
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are generated, their impact on the average squared
residuals based on (14) is calculated. From these

results, the optimal k can then be determined.

We illustrate the technique on a mutual fund

performance data set in the next section.

0.94003 28.862 0.45561 26.826

1.3692 28.862 0.87843 26.826

1.7984 28.862 1.3013 26.826

2.2276 28.862 1.7241 26.826

2.6568 28.862 2.1469 26.826

3.086 28.862 2.5697 26.826

3.5152 28.862 2.9925 26.826

3.9444 28.862 3.4154 26.826

4.3736 28.845 3.8382 26.826

4.8028 28.254 4.2610 26.826

5.232 26.604 4.6838 26.830

5.6613 24.119 5.1067 26.484

6.0905 22.594 5.5295 25.496

6.5197 22.201 5.9523 24.210

6.9489 22.197 6.3751 23.486

7.3781 22.331 6.7979 23.284

7.8073 22.504 7.2208 23.333

8.2365 22.680 7.6436 23.462

8.6657 22.844 8.0664 23.602

9.0949 22.992 8.4892 23.732

9.5241 23.122 8.912 23.848
5. Results

The above procedure was applied to our data-

set. Towards that end, the data of 684 observa-

tions were equally divided into two sets A and B.
The variables in this data set consisted of the size

djð¼ lnððd1 þ d2 þ d3Þ=3ÞÞ and the performance yj
of a fund. To determine the value of d� for a

particular optimization of Model (13), the range of

fund sizes drange was first determined from the
training set, and n, the number of d� values to

consider was chosen to be 22. k was similarly

chosen by setting the initial value of k ¼ 0:1, and
then incrementing k by 0.1 for each new iteration

of the model, until k ¼ 0:9. In principle, the results

may be affected by the granularity, i.e., the number

of values, of k and d�. Preliminary experiments

with this particular dataset indicated that the re-
sults were robust with respect to the granularity,

and as such we only present a representative set of

results.

The results of running the above search proce-

dure leads to 198 (22 · 9) model solutions counting

each trial combination of d� and k. The results are
presented in Table 1, where the minimum values of

the average squared residuals are shown for each
respective size d�. The optimal size is at
Table 2

Model performance across lambda

k Training set A: d� ¼ 6:9489

y� k x R

0.1 15.11 0.347 0.182 22.205

0.2 15.30 0.345 0.386 22.202

0.3 15.52 0.342 0.619 22.200

0.4 15.78 0.340 0.891 22.198

0.5 16.10 0.338 1.215 22.197

0.6 16.50 0.337 1.622 22.197

0.7 17.04 0.338 2.160 22.197

0.8 17.85 0.340 2.952 22.198

0.9 19.43 0.354 4.476 22.219
d� ¼ 6:9489 giving an average residual of 22.197
when using A as the training set; and d� ¼ 6:7979
with an average residual of 23.284 when using B as

the training set. It should be noted that for these

optimal sizes, we get feasible solutions across all

ranges of chosen k values. These feasible solutions

are shown in Table 2, and also plotted in Figs. 1

and 2 for the range of k values. Clearly, as k! 1,

the model goes towards a pure frontier model.
Training set B: d� ¼ 6:7979

y� k x R

15.38 0.359 0.183 23.284

15.55 0.353 0.387 23.284

15.75 0.347 0.618 23.286

15.99 0.340 0.885 23.290

16.27 0.334 1.203 23.296

16.64 0.329 1.596 23.304

17.14 0.325 2.116 23.310

17.89 0.324 2.874 23.310

19.29 0.337 4.206 23.293
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That is, potential solutions can be generated for
each k 2 ð0; 1Þ. However, these various solutions

have better or worse predictive capabilities as

measured by the criterion (14).

The optimal fund size corresponds to either

d� ¼ 6:9489 (equivalent to $1.042 billion), or

d� ¼ 6:7979 (equivalent to $896 million). For these

two optimal sizes, a range of k values worked

equally well. These results are also consistent with
the results found in the regression approach of
Indro et al. (1999).

This work has practical significance for inves-

tors wishing to select mutual funds. As is well

known, best performers in the previous year at-

tract greater investments in the subsequent year.

While attention to good performers is quite natu-

ral, investors may also wish to look at the standing

of the fund in relation to optimal fund size.



M.D. Troutt et al. / European Journal of Operational Research 166 (2005) 520–527 527
Although a fund may have done well in a previous
year, it may have been operating near or over

optimal size at that time. If it attracts a great influx

of new investments, as will be expected, it may

move far away from optimal size so that its per-

formance could suffer in subsequent years. A fund

that did moderately well, and which is likely to

remain at, or move into optimal fund size range,

may be a better choice.
6. Conclusions

This paper discusses frontier estimation. We

first demonstrate that maximum likelihood does

not yield a plausible solution to models of this

kind. However, since the practical modeling value
of the composed error approach is very compelling

for performance data, we seek a suitable criterion

for such estimates.

Maximum likelihood estimation requires

restrictive distributional assumptions and the

functional form of the model needs to be specified.

Here we propose a distribution-free, data-driven

approach where the functional form is the result of
our estimation procedure. As an example, we use

mutual fund data to provide a step-by-step pro-

cedure to implement our model. Our procedure

involves training and test samples, and cross vali-

dation is done by switching samples.

The key parameter in our model, k, specifies the
proportional split of the total error term into

white-noise error and inefficiencies. For the mutual
fund data in question, our model shows that for

various levels of k, parameters can be reasonably

estimated, thus overcoming the major deficiencies

of the maximum likelihood approach. Further-

more, the best model as suggested by our proce-
dure shows the optimal fund size may be smaller
than that previously obtained by ordinary least

squares regression.

This study shows how a distribution-free ap-

proach can be used for frontier estimation, and the

application is illustrated with mutual fund data.

To that end, our sample data set has validated our

procedure. But, as is true with illustrations with a

single data set, results from this study may not be
generalized to other problem settings. Thus, one

area of future research is to focus on the general-

izability of this technique to other problem do-

mains.
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