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Abstract: Field service managers are often faced with the problem of balancing the number of technicians, territory
size, and field service quality. This paper presents an approximate state-dependent queuing model that can help
field service managers make these tradeoffs. Simulation experiments over a variety of field service environments
demonstrate that this model is quite accurate for predicting mean travel time and mean response time. The ap-
proximate queuing model has been imbedded in a decision support system and implemented by a Fortune 100
company. Management found the decision support system very useful in making important field service decisions.

B Field service planning is becoming increasingly impor-
tant as ‘‘high tech” machines such as computers, robots,
communication systems, and copy machines are becoming
more popular and more widely dispersed geographically.
Field service repair for these products is a major compet-
itive issue (Blumberg [3]). In order to compete effectively,
field service managers must frequently make difficult trade-
offs between service level (typically measured by the mean
response time) and service system cost (technician and travel
cost).

The problem cannot be adequately addressed with any
queuing theory model currently in the literature. Simulation
is not recommended because of the high computational ex-
pense.

This paper presents an approximate state-dependent queu-
ing model that can help field service managers make trade-
offs between the number of technicians, territory size (for
square territories), and mean response time. The model can
be used to quickly evaluate the performance of alternative
territory designs to help field service managers make both
tactical and operational decisions.

The first section of the paper reviews the relevant field
service repair literature. The second section presents a model
for determining the expected travel time given the steady
state probabilities of n failures in the system, P,. The third
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section presents an approximate state-dependent M/G/s queu-
ing model for estimating the P, and the expected steady state
response time for s servers (technicians). The fourth section
presents a simulation experiment which demonstrates that
the approximate M/G/s model is quite accurate in a variety
of field service territory environments. The paper concludes
with a summary of the results and a brief overview of the
implementation of the model.

Field Service Repair Literature

The field service repair literature can be divided into two
categories: ‘

1. Round trip travel from a central facility to the failure
location, and, :

2. Sequential trip travel from one failure location to another.

The round trip travel models are most useful for low utili-
zation servers (such as fire engines) where the server has
a central ‘‘home base’’ location. The literature in this area
is fairly extensive (Chelst and Jarvis [4], Chiu and Larson
[5], Berman, Larson, and Chiu [2], Eilon, Watson-Gandy,
and Christophides [7], Kolesar [15], Kolesar and Blum [ 16],
Larson [17]).

Sequential trip travel models are most useful for environ-
ments with high service utilization and where the servers
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do not return to a central location but rather move from one
failure location to another throughout the day. In this type
of field service environment, when the servers (technicians)
finish servicing a failure (customer), they call in to a dis-
patcher for their next assignment. If a repair is not complete
at the end of the day, the repair is resumed at the beginning
of the next workday without any additional *‘response time”’
for the customer. (In this case technicians travel on their
own time and arrive at the customer location at the begin-
ning of the next workday.)

Sequential trip models can be further broken down into
finite and infinite calling population models. Agnihothri [1]
deals with single server finite calling population models.
He also suggests heuristic methods for handling multiple
servers in a closed queuing network.

Most “‘high tech’’ field service repair systems deal with
sequential trip, high machine population (i.e., infinite call-
ing population) environments. The remainder of the liter-
- ature review and the remainder of the paper, therefore, deal
exclusively with sequential trip, infinite calling population
models.

Dzubow [6] developed a simulation approach for the multi-
ple server, sequential trip, infinite calling population field
service system. He presents a methodology for optimizing
field service decision variables using simulation as the means
to evaluate system performance.

Hambleton [10] proposed a simple square root model for
a multiple server, sequential tnp, infinite calling population
field service system:

E(T) = K.(a* + b»)'?/(2vs*'?) (1a)

where,

E(T) = expected travel time.

a,b = dimensions of the rectangular field service territory.

v = constant travel velocity (speed).

K, = constant used to fit the model to historical data.
s = number of servers assigned to the territory.

Hambleton assumes that machines are uniformly distributed
throughout a rectangle of size (@ X b) and that the mean
distance between two random points is one half of the di-
agonal distance (i.e., (a*+b%)'/%/2). Kolesar and Blum [16]
developed and tested a very similar ‘‘square root law’” model
for fire engines traveling from fixed locations to fire emer-
gency locations:

E(T) = K,(ab)'/*/s'/2. (1b)
They state that this ‘‘approximation is reasonable if the prob-

ability that all units are busy is small.”” Note that the Ham-
bleton and the Kolesar/Blum models are essentially
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equivalent in form.

For s = 2 these models are not accurate as travel time
becomes a function of the number of failures in the system
(state of the system). For example, if the queue of failures
waiting for service is not empty, the first available server
is dispatched to the first failure in the queue and the expected
travel time is no better than a system with only one server.
However, if no failures are in the system when a failure
occurs, all s servers are available and the nearest server is
dispatched to service the failure. In this case the expected
travel time will be much less than that with only one server
available. Expected travel time and service time, therefore,
are dependent upon the state of the system and must be de-
fined in terms of P,, the steady state probability of n fail-
ures in the system, which is by nself a function of the

expected travel time.

In order to evaluate the Hambleton and Kolesar/Blum——

square root models (equations 1a and 1b), we conducted-
an extensive simulation experiment of high utilization field
service environments (.6 <9 =<.9). (We define utilizationr
o as the percent of the time that the servers are busy with
either travel or machine repair.) We found the best constant
K, for s=1 and then applied the equation (1a) to estimate
the expected travel times for s=2,3,...,6. The estimated
travel times were very different from the simulation results
(average absolute error = 50%). We conclude, therefore,
that the multiple server sequential trip field service support
problem cannot be adequately modeled with a square root
model.

Smith [21] presented a queueing model for the single
server, sequential trip, infinite calling population field serv-
ice system:

E(T) = (a+b)/(3), @
VT) = c(a@®+b)/(18v)) 3)

where, | .
a,b = dimensions of the rectangular field service territory.

v = constant travel velocity (speed).

E(T)
1)

expected travel time.

variance of travel time.

¢ = constant used to correct for the slight autocorrela-
tion in travel times caused by the fact that the end-
ing point of one trip is the beginning point of the
next trip. (Smith suggests that ¢ is approximately
1.1 for a square territory.)

This model assumes that all travel is along the x and y di-
mensions of a rectangle (L, metric) with dimensions (a and
b) and that failures are distributed randomly with uniform
density throughout the rectangular territory. Smith combines



the above travel time model with the Pollaczek-Khinchine
model [12] to determine the mean response time forasimngl
server in a rectangular territory. ;

The time line in Figure 1 defines several important terms
that are used in Smith’s M/G/1 model and in this paper.
Service time is defined as the sum of travel time and ma-
chine repair time. Response time is the sum of queue time
and travel time.

Given that the system is a single channel queue with Pois-
sonarrivalsoffaﬂureswithmeantatekandanarbitrary
machine repair time distribution with-known mean, .., and
standard deviation, o¢,, Smith applies the Pollaczek-
Khinchine M/G/1 model to calculate the expected queue time:

o WeseltelMA-) @
where,
7 = mean service time
= mean travel time E(7) plus mean time to repair 7.,
= (a+b)/(3v) + 1.,
¢ = utilization
= mean failure rate/mean service rate
= A7,
service time variance

¥
o

travel time variance V(T) plus time to repair var-
iance o2, » .
c(@+b*)/(18v*) + o2.

Expected response time E(R) is then:

ER) =W, +E(T) = er(1+0*/7)/[2(1 - @)] + (a+b)/(3v).
' ®

Smith points out that g, 7, and o* depend only upon the
territory size parameters @ and b and known parameters ..,
O, and v. He then presents a method for optimizing the
territory size parameter, g, assuming a square territory (a=>b)
for a single server given a desired expected response time
E(R). Smith also points out that service times are autocor-
related (the destination for one trip is the origin for the next)
and argues that the error induced by assuming that service

Machine Server Machine Machine
Failure Begins Repair Repair is
Occurs Travel Begins Complete

I Queue Time l Travel Time I Repair Time l

I Queue Time , Service Time I

| Response Time l Repair Time l

Figure 1. Time Line

times are IID is small. The following sections present a field
service planning model that extends Smith’s work to the se-
quential trip, multiple server field service environment.

A Model for the Expectation of Sequential Trip
Travel Time

We seek to develop a model that expresses the expected
travel time E(7T) as a function of the mean failure rate, A,
the mean and standard deviation of the arbitrary distribu-
tion of the time to repair, 7., and o, the number of servers,
s, the dimensions of the rectangular territory, (@ X b), and
the constant travel rate, v. We will assume, as previous au-
thors have, that either the L, or L, metric can adequately
reflect the travel times within the territory and that failures
are uniformly distributed within the territory. The L, metric
is superior to either the L, or L, metrics Love and Morris
[19] [20]. If desired our results can be generalized'to the
L, space, but the additional accuracy may not be worth the
additional complexity of such an approach. We also assume
as did Smith [21] that the autocorrelation in the travel times
is not significant. :

As discussed above, if all s servers are busy when a fail-
ure occurs, the first server that becomes available is dis-
patched to the failure. Expected travel time for this case
is the same as expected travel time with only one server.
If exactly one server is available at the time a failure oc-
curs, the expected travel time is again the same as the one
server case. If two or more servers are available, the closest
server is dispatched and the expected travel time is signif-
icantly less than in the one server case.

We can develop a model for the expected travel time given
that k servers are available. Suppose that a failure occurs
at some location (x,,yo) in the (@ X b) rectangular territory
and that k servers are available at random locations (x:y0),
i=1,...,k]. As stated above, if k=0, the first server that
becomes available will be dispatched. Let (x,,y,) and ¢, de-
note the location and travel times of the i-th available server
(1 =i<k) to the failure location. Since the closest available
server will be dispatched, actual travel time to service a fail-
ure will be:

T, = min () 6)

Isi<k
where,

travel time from closest server to the failure with k
servers available.

T,

t; = travel time from server i to the failure location.

{lx;=xol* + ly:=yol®}*"4/v for the L, metric.
The density, expectation, and variance for the random var-

iable T, for the L, metric are derived by Hill and Nachtsheim
[11] for general values of @ and b. The expressions are
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lengthy, explicit functions of both a and b. (Larson and Odoni
[18] page 142 define a similar problem but do not provide
expressions for the parameters of interest.) Often in prac-
tice, however, the territory can be assumed to be square
(a=b) which results in a much simpler form. In what fol-
lows we restrict attention to this special case. For a=b and
d=1, the density of T, derived in the Appendix, is given by:

[ kv{l— (V' —8av’r +12a*V**)/(6a*)} !

X (4vF —24a* +24a*vt)/6a*,
(for 0<t=<a).

VAR : N
| kv{(#r —8av'e +246%F - 32t +10a%)/(6a")+ 1}

x( —4v¥ +24av*r —48a*vt+32a%)/6a*;
(for a<t<2a).

Analytic expressions for the mean and variance can be ob-
tained for any k by direct integration of (7) (Hill and Nacht-
sheim [11]). Results for 1<k=<6 are summarized for
a=b=v=1 in Table 1. These Ey(T}) and V,(T.) values can
be rescaled for general values of a and v to determine E(T})
and V(T,). For 1 =k =<s and for general values of a and v,
E(T)=EyT)a/v and V(T.)=Vo(T)a*»*. The proposed
model, therefore, can be implemented in territory planning
optimization simply by using the parameters from Table 1.

The above model assumes that travel time is a linear func-
tion of distance. Kolesar [15] modeled travel time as a non-
linear function of distance. A change of variable can be used
to yield the density of T, when travel time is a non-linear
function of distance. This extension has not been pursued
here.

Expressions are very difficult to derive for the L, metric.
Equation (6) was simulated with d=2, therefore, to approx-

imate Eo(T,) and Vo(T}) for a unit square territory (a=b=1)..-

with speed v=1. Again, these values can be rescaled for
other values of a and v to calculate E(T}) and V(T;). The
L, simulation estimates have relative precision better than
0.001 for a 90 percent confidence interval on the mean (sam-
ple sizes were in excess of 1 million observations). Table
1 can be used to determine values for E(7;) and W(7,) for

Table 1. E«(T.) and V,(T.) for Square Territories
with the L, and L, Metrics
Number of
Servers ; ;

Available L, Metric L, Metric
k Eo(Ty) Vo(T) E(TY) Vo(TY)
1 6666667 .1111111 521171 .061441
2 4776000 .0616676 .389067 1042323
3 .3902838  .0426040 .322003 .031664
4 3373742  .0324106 .279158 .024905
5 3010032  .0260590 .249567 .020399
6 2740734  .0217311 .227051 017094
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a square territory for up to six servers for either the L, or
the L, metric. '

We note that for n=s that E(7.-,)=E(T;) and calculate
the expected travel time for the territory with s servers as:

E(T) =Y P.E(T..)

n=0

—SP.ET.) + 3 P.ET.)

n=0 n=s

=¥ P.ET.) + ETIYP.

n=0 n=s

-21’ ET-) + (11— ZP..) ET)

n=0

=Y PET ey + A-T P) ETian.  ®

n=0 n=0

A Model for Expected Steady State Response Time
with Multiple Servers

Equation (8) is of little use for field service planning, how-
ever, unless we have a means to estimate the steady state
probabilities P,. In this section we will present an approx-
imate model for calculating these probabilities and for es-
timating the expected response time E(R) for a multiple
server territory.

If service time (the sum of travel time and time to repair)
is assumed to be exponentially distributed and not state-
dependent, and if we knew the expected travel time, E(T),
we could use the standard M/M/s model (Hillier and Lie-
berman [12]) with p=[E(T)+7.]", @=M(su), and 6,=
(\/p)/s! to estimate the expected time in queue as:

W, = Pob.e/IN1-¢)]. ®
We could then calculate expected response time as:
ER) = W, + E(T) = Pf.e/IM1—¢)’] + E(T). (10)

However, the M/M/s queuing model is inappropriate for
field service planning as the travel time component of serv-
ice times is a function of the state of the system and has
an expectation defined by equation (8).

We can modify the M/M/s model so that it has state-
dependent service times by defining the state-dependent serv-
ice rates as:

NETrnsr) + 1] forn < s
bn = a1n
S[E(Ty) + 1] forn > s

where g, is the rate at which all busy servers achieve serv-



ice completions. The state-dependent M/M/s model is dif-
ferent from the M/M/s model in that:

6. = TT0Vko 12)

k=1

which becomes:

O] TIET ) + 1] forn < s
k=1
6. = » (13)

MNs)[E(Ty) + 1.0, forn > s

@mar = N [E(T) + 7a], 14)

Py = ‘)f;o} = {):o + 6J(1— e....)} as

n=0 n=0
W, = Poosé»..xllx(l-em)’]. : (16)

This state-dependent model is unlike the state-dependent
model in Hillier and Lieberman [12] in that it has a closed-
form expression for the infinite series in equation (20) and,
therefore, a closed form expression for W, and E(R). The
other M/M/s equations are still applicable. This model does
not require that we know E(T) a priori. We need know only
the E(T,)=Ey(T.)a/v (where the constants Eo(T},) are from
Table 1).

Unfortunately, this state-dependent M/M/s model is not
adequate for field service planning as service time is the
sum of two random variables (travel time and time to re-
pair) and therefore, is not exponential. In a large set of sim-
ulation experiments this model overestimated expected
response time by 20 to 65 percent. (Green and Kolesar [9]
found that the police service times did fit an exponential;
however, this is significantly different context.)

In order to handle this difficulty, we need to develop a
state-dependent queuing model with general service times.
Tijms [22] and others have presented approximate M/G/s
models. Federguen and Tijms [8] have developed a recur-
sive model for the M/G/s queue with a variable service rate.
In our opinion, none of these models could be modified as
easily as Yao’s M/G/s model [23] to handle state-dependent
service times. Yao’s M/G/s B-model is: -

e = MGsw), an
rno=20\-p/A+p0?), a8
re =20\ —sp)/(\ +sp°0%), 19)
8, = Np)/n!, (20)

P, ={'ifo.+o./(1—e)
n=0

+ (se/rx)[ew(n/Z)—eXP(-rJZ)-rJ}q, @n
P, = Py(8,/r,)[exp(r/2) —exp(—r,/2)}, 22

P, = P, form =2,..;s, .23)

We = Pob,e/IN1—0) (1 —exp(r.))]. )

In order to make Yao’s model a state-dependent M/G/s
model for field service planning, we note that the Yao model
equations (25)-(29) are similar to M/M/s equations (11)-(14).
We can make the Yao model state-dependent as we did with
the M/M/s model by making the 6, state-dependent with
equation (13) and substituting @.... from equation (14) for
Q. r, and r, are also redefined with state-dependent service
times and variances. For r, we define p=[E(T})+7.]™" and
@*=W(T)+o?% and for r, we define u=[E(T,)+7.]" and
a=WV(T)+0d%.

In summary, the proposed approxlmate state-dependent
M/G/s model for field service planning is:

. 2{\ — [E(T)alv + 1.1}
'TN T EoT)aly + m Vo(T)ah + 0]’

@5

, 2{\ = s[E(T)alv + 7,17}
TRF s[Eo(Tl)a/v + 1m] 2 [Vo(T))@V + 03]’

(26)

)] TEoTrdaty + 7] forn<s
k=1
6. = | . @n
W)y [Eo(T)alv + 1m]™* Q, forn=s

@maz = NEo(Th)a/v + 1.], (28)

n=0
+ $SQmas/r1 [exp(r1/2) —exp(—ri/2)—r] }il, 29
P, = Pofy/ri[exp(ri/2) —exp(—ri/2)], (30) -

P,=P#f, forn=2,..,s, @31

s=1 .
B = ¥ PET- )@ + (1 - ¥ PIET) @), @D

n=0 n=0

ER) = W, + E(T) = Pob,@mas/ M1 — @mas)(1 —exp(r.))] + E(T).
(33)

The expected response time E(R), therefore, is a function
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of the constants E.,(T.,) and Vy(7,), the system paramem; X," b

Tms Om, V, and the decision variables s and a. The model can
be used to explore tradeoffs between the expected response time
E(R), and the decision variables s and a.

Simulation Experiment

Since the above model is approximate, it is important that
we test:the model in-a variety of field service repair envi-
ronments. We developed a simulation, therefore, of a field
service support system with Poisson arrivals of failures at
failure locations ¢x,y) where x and y are uniformly distrib-
uted on the interval [0,a] The simulation results can then
be compared teo the expected values estlmatedby the approx-
imate model.

The field service problem environments for this experi--
ment are characterized by:

1. Number of servers, s, setat 1, 2, 3,.4, 5, and 6. (Few
field service territories in our experience have more than

6 servers.)

2. Target utilization set at .6, .7, .8, and .9. (These are

roughly the same limits set by Smith [21].)

3. Poisson arrivals of failures to the system with failure rates
\ are adjusted to achieve the target utilizations with A=

SO/ET)+ 7).

4. Square field service territory with a=50 miles, constant
speed v=30 miles per hour, and distance defined by the

5. The time to repair distribution is exponentxal with 7,,=
0,=2 hours.

As suggested by Kelton and Law [14], each simulation
run is initialized with the expected number of failures in
the queue, A\W,, where W, is estimated using the approxi-
mate state-dependent M/G/s model. The batch means ap-
proach was used to provide serially mdependent observations.
Each field service problem environment is simulated until
a 90 percent confidence interval on the mean response time
has a relative precision better than 0.01.

Table 2 summarizes the problem environments in this ex-

 periment. Actual utilizations are slightly different from tar-

get utilizations because we do not have an exact method for
determining the arrival rate required to achieve a given tar-
get utilization for s> 1. The long simulation run lengths sup-
port our earlier contention that simulation is not an adequate
approach for this problem if the field service planner must
simulate many field service environments.

Table 3 reports the approximate queuing model expected
travel times, E(T), as well as the mean travel times from
the simulation experiments for the 20 problem environments.
Table 4 reports the same information expressed as percent
differences from the simulated values where:

Percent Difference = 100 [Simulation Mean
— E(T))/Simulation Mean. (34)

The mean percent difference across all 20 problem environ-
ments in expected travel time is 1.3 percent. The mean ab-

L, metric. solute percent difference in expected travel time is also 1.3
Table 2. Simulation Experiment Problem Environments
Number of A
Servers Target Utilization
s .6 7 .8 9
1 Mean Arrival Rate A .19286 .22500 25714 .28929
Number of Failures 345,000 535,000 770,000 1,010,000
Simulation Utilization .60014 .70022 .80024 .90030
2 Mean Arrival Rate \ .39104 45175 51236 57169
Number of Failures 310,000 500,000 750,000 980,000
» Simulation Utilization .59359 .69122 .78878 _ .88457
3 Mean Arrival Rate A\ 60124 .69053 .77838 .86725
Number of Failures 285,000 485,000 740,000 995,000
Simulation Utilization .59423 .69388 .79039 .89016
4 Mean Arrival Rate \ .81881 .93949 1.05306 1.16693
Number of Failures 265,000 485,000 740,000 990,000
Simulation Utilization .59644 .69803 .79496 .89438
5 Mean Arrival Rate \ 1.04975 1.19136 1.33738 1.44995
Number of Failures 260,000 455,000 745,000 950,000
Simulation Utilization 0.60238 0.69776 0.80134 0.88318
6 Mean Arrival Rate \ 1.28019 1.45007 1.59265 1.77921
Number of Failures 255,000 475,000 700,000 1,025,000
Simulation Utilization 0.60316 0.70031 0.78549 0.90311
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Table 3. Approximate Queuing Model. Expected Travel Time and Simulation Model Mean Travel Time

Number of .
Servers Target Utilization

s Model .6 7 8 9
1 Queuing Model E(7)* 111111 11111 111111 111111
Simulation Mean by 1.11145 1.11184 11111 1.11100
2 Queuing Model E(T) 1.02801 1.05114 1.07206 1.09073
Simulation Mean 1.03759 1.05901 1.07776 1.09431
3 .~ Queuing Model E(T) 0.95417 0.99581 1.03473 1.07220
Simulation Mean - 0.96729 1.00920 1.04549 1.07852
4 Queuing Model E(T)- 0.89025 0.94856 1.00291 1.05649
Simulation Mean SFa 091196 0.96866 1.01838 1.06506
5 Queuing Model E(T) , 0.83855 0.90598 0.97743 1.03318
g Simulation Mean ' F-2770.86521 0.92877 099490 1.04439
8 Queuing Model E(T) B 0.79111 0.86909 0.93849 1.03320
. Simulation Mean 0.82120 0.89541 0.95930 1.04459

Note: °E(T) is exact for s=1.

Table 4. Percent Difference Between Approximate
Queuing Model Expected Travel Time and
Simulation Model Mean Travel Time
N;::’I::_:f Target Utilization
s .6 7 8 9
1° 0.03% 0.07% 0.00% 0.01%
2 0.92% 0.74% 0.53% 0.33%
3 1.36% 1.33% 1.03% 0.59%
4 2.38% 2.08% 1.52% 0.80%
5 3.08% 2.45% 1.76% 1.07%
6 3.66% 2.94% 217% 1.09%

environments. The Pollaczek-Khinchine M/G/1 results
(Smith’s model) are also shown for s=1. These results show
that the proposed approximate model does very well even
for the single server case. Smith’s travel time variance cor-
rection factor c=1.1 does not make a noticeable improve-
ment.

Table 6 expresses the approximate queuing model expected
response time E(R) in terms of percent differences from the
simulation mean response times. The mean percent differ-
ence in expected response time is only 0.02 percent and the
mean absolute percent difference is .88 percent. The worst
case absolute percent error (3 percent) is for the single server

Note: °E(T) is exact for s=1.

percent.

Table 5 reports the approximate queuing model expected
response times E(R) =W, +E(T) as well as the mean response
times from the simulation experiments for all 20 problem

model.

Conclusions

This paper has presented an approximate state-dependent

Table 5. Approximate Queuing Model Expected Response Time and Simulation Model Mean Response Time
b A Target Utilization
Servers

s Model 6 7 .8 9

1 Queuing Model E(R) 4.58058 6.43830 10.16345 21.37624
Simulation Mean 4.44734 6.33775 10.10821 21.51625
M/G/1 Model (c=1.0)* 4.48313 6.35648 10.10317 21.34325
M/G/1 Model (c=1.1)® 4.49058 6.36806 10.12302 21.38790

2 Queuing Model E(R) 2.35559 3.23791 4.96078 9.53988
Simulation Mean 2.30910 3.20083 4.97528 9.59303"

3 Queuing Model E(R) 1.69090 2.30965 3.52462 7.04952
Simulation Mean 1.66588 2.30203 3.53758 7.10791

4 Queuing Model E(R) 1.36409 1.87575 2.86732 5.81606
Simulation Mean 1.36169 1.88591 2.88709 5.84481

5 - Queuing Model E(R) 1.18229 1.60154 2.51907 4.41901
Simulation Mean 1.19251 1.60356 2.53329 4.42717

6 Queuing Model E(R) 1.04621 1.42295 2.04863 4.71568
Simulation Mean 1.06382 1.44032 2.06257 4.77110

Notes: “Smith’s M/G/1 model with ¢=1.0.

5Smith’s M/G/1 model with c=1.1.
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M/G/s model for estimating steady state expected travel times.
E(T) and expected response times E(R) for a field service

territory defined by the system parameters: \, the mean faf~~

ure rate, 7., and ¢,., the mean and standard deviation of the
arbitrary time to repair distribution, v, the constant travel

rate (speed), and the decision variables: s, the number of -

servers (technicians), and a, the square territory size param-~
eter. The model can be applied with either the L, or L, met-
ric. The paper also suggests ways to extend the model to
non-square territories.

Simulation experiments have demonstrated that the approx-

imate model is able to make accurate estimates for both the

expected travel time and expected response time in a vari-
ety of field service repair environments. Mean absolute per-
cent differences between the queuing model expected values
and the simulation means are on the order of 1 percent for
these experiments.

The model can help field service planners to quickly eval-
uate tradeoffs between field service workforce size, terri-
tory size, and mean response time. The model was imple-
mented in a decision support system by a Fortune 100 com-
pany to facilitate the analysis of a major change in work-
force levels. The DSS was designed so that the management
could gain insight into the tradeoffs between response times,
expected travel times, and workforce levels. The model was
useful in convincing management that small reductions in
the number of technicians (servers) would have a signifi-
cant effect on total system performance. Decreasing the num-
ber of technicians simultaneously increases travel time and
reduces overall service capacity and results in significantly
poorer service.
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Appendix

Distribution of Sequential Travel Times in an L, Distance
Metric Rectangular Territory with k Servers Available

The L, distance, D, from any server at location (x,,y,) to
a random failure at location (x,,yo) is D=X+Y, where X=
|x:;—x0| and Y=|y,—y,|. The corresponding travel time is



D/v. By assumption, x; and x, are independent, uniform ran-
dom variables on [0,a]. Similarly, y, and y, are independent
and uniform on [0,b]. In what follows we take a<b with-
out loss of generality. If U, and U, are independent uniform
random variables on [0, 1], it is easy to show that the den-
sity of Z=|U,—U| is f(2)=2(1~2) for 0sz=<1. _

A change of variable yields the densities of X and ¥,
fx®)=(2/a) (1—x/a) and f,(y)=(2/b) (1—y/b). Convolving
X and Y to find the cumulative distribution function of D,
we have by independence:

Fold) = {{ fefro)dsay

where ' :
As = {(x.)’)IOSxSa; OSysb; x+ysd}'j:‘f:”
Integration yields:

(d*—(4a+4b)P + 12abd?)/6a*b?; (0<d=<a)
(5b° +8ab*—8b*d)/6a*b
— (d*—2(a+b)d+b*+2ab)/a?; (a<d=<b)
Fyd) =
{—d*+4(a+Db)d®—(6b*+12ab+6a*)d*
+ (4b°+12ab*+12a%b+4a%)d
- b*—dab*—4a’b—a*}/6a*b?; (b<d=a+b).
From Johnson and Kotz [13] we know that the cumulative dis-
tribution function of the minimum distance among k servers, D;,

1<ks<s, is:

Fp,(d)=1—(1-Fp(d))*.
The density of D, follows by differentiation with respect
to d. Since T,=D,/v, a change of variable yields the density

of T, and (7) results when a=b. Means and variances of
T, are found by direct (symbolic) integration of (7).
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