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Classification problems are used to determine the group membership of multi-
dimensional objects and are prevalent in every organization and discipline. Central
to the classification determination is posterior probability. This article introduces
the theory and applications of the classification problem and of neural network
classifiers. Through controlled experiments with problems of known posterior prob-
abilities, we examined the effect of sample size and network architecture on the
accuracy of neural network estimates for these known posterior probabilities. Results
show that neural network estimates are sensitive to sample size but are robust in
terms of network architecture. Neural network classifiers provide good estimates

of posterior probabilities.
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1. Introduction

Classification involves the assignment of an object
to an appropriate group based on several variables
(also called artributes) describing that object. For ex-
ample, Tam and Kiang (1992) used 19 financial ratios
like capital/assets to predict whether a bank is about
to go bankrupt. Similarly, financial firms use infor-
mation on credit history, employment status, and so
forth in granting credit to an applicant.

Recently, neural networks have been widely used
in classification. One reason for this is that, unlike
traditional statistical procedures such as linear dis-
criminant analysis (LDA), neural networks -adjust

Ming S. Hung, Murali S. Shanker, and B. Eddy Patuwo,
Depariment of Administrative Sciences, College of Business, Kent
State University, Kent, OH 44242-0001. E-mail: mhung@axon.
kent.edu.

Michael Y. Hu, Department of Marketing, College of Business,
Kent State University, Kent, OH 44242-0001.

themselves to available data and do not require any
specification of functional or distributional form of
the population. Second, neural networks have per-
formed quite well compared to traditional procedures
(Patuwo, Hu, & Hung, 1993). The third and, to us,
most important reason is that neural networks provide
estimates of posterior probabilities. Decision rules for
classification and the ability to make statistical infer-
ences are based on posterior probabilities.

The first objective of this article is to establish the
theory behind estimation of posterior probabilities. For
that, a review of statistical classification theory and
the theory of least square estimation is necessary. The
second -objective is to evaluate the effectiveness of
estimating posterior probabilities using neural net-
works. Although theory says that good estimation is
possible with a large network and a large sample,
practical problems usually have small samples that
constrain the size of neural networks. Additionally,
although the theory assumes a unique solution to the
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least square problem, general neural networks admit
multiple local minima. The question, then, is whether
this situation renders the results unacceptable. The an-
swers to these issues were obtained by experiments
using problems with known posterior probabilities.
This article is organized as follows. The theory of

classification is reviewed in Section 2, in which pos-
terior probabilities are defined and decision rules for- :

mulated. Section 3 provides a detailed development
of the theory of least square estimation as applied to
the classification problem. Section 4 contains a brief
introduction to neural networks. Specific research
questions are posed in Section 5. Section 6 explains
the experiments with two-group classification prob-
lems involving both continuous and discrete variables.
The results are discussed in Section 7. Overall, neural
networks are quite capable of estimating posterior
probabilities. Extensions of the results into interval
estimations are discussed in Section 8, which is fol-
Jowed by a brief conclusion section.

2. Theory of Classification

Let each object be associated with a d-vector x of
attributes. Assume that X ¢ R¢ is the sample space
that is divided into m groups. Following Duda and
Hart (1973), let «; denote the fact that an object is a
member of group j. Define

P(w;) = prior probability of group j, the prob-
ability that a randomly selected object belongs
to group j.

fix | @) = conditional probability density func-
tion for x being a member of group j.

The posterior probability P(«w; | x), which is the
probability that object x belongs to group J, is obtained
using the Bayesian rule:

(X,m ) (] )

P I 9="r

fow) = fix | @)P@),

f=Y fxo)
Fl

Suppose a particular x is observed and is to be
assigned to a group. Let c;(x) be the cost of assigning
x to group i when it actually belongs to group Jj- The
expected cost of assigning x to group i is

C{x)= 2 cfx)P(W; | x) )

»

Because x will be assigned to only one group, let C(x)
be the resultant cost. The objective of a decision maker
is to minimize the total expected cost,

c=] Caywuur ©)
XeX

Function C is minimized when each term C(x) is
minimized, and that is accomplished by

‘Decide , for x if Cy(x) = min C(x) C)

The above is known as the Bayesian decision rule in
classification.

A particular case for the rule is when the cost is
binary: ¢,(x) = 0 if i = j and 1 otherwise. The cost
function C{(x) can be simplified to

=Y P | n=1-Pu, |l

inj
and the Bayesian decision rule is reduced to

Decide @, for x if P(w, | x) = max P, | x) (6)

The general cost (Equation 2) is useful in applica-
tions in which the cost of a wrong assignment is dif-
ferent for different groups. For example, in the bank
failure prediction model of Tam and Kiang (1992),
for a depositor the failure to predict a bank going
bankrupt could mean a greater cost than the mistake
of declaring a healthy bank bankrupt. When the cost
is equal or unavailable, the 0-1 cost can be used.
Then, using Equation 6, the decision is to minimize
the number of wrong assignments. The above clearly
establishes the importance of the posterior prob-
abilities in classification. But, posterior probabilities
are generally difficult to compute, except for some
simple cases. Here are two examples:

Example 1. Consider a two-group problem with
two-dimensional variables, where each variable is a
Bemnoulli random variable. In general, x = x,.x)s
where x;= 0,1 for i = 1,2. To be realistic, assume that
the covariance of x, and x, is nonzero. This means that
x, and x, are dependent on each other.

For discrete variables x, the conditional density
function f(x | w) is a probability mass function and

Table 1. Conditional Probabilities for Example 1

X = (x,x) P | o) Px | ©)
(0,0) 615 JA18
(10) 085 .185
©.1) .185 085
((A)] 115 615

H
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Table 2. Joint and Posterior Probabilities for Example |

x = (x,1, P(x,0) P(x,0)) P(x) P, | x) P, | 0
©00) 3075 0575 3650 84247 15753
(1.0) 0425 0925 .1350 3148 68519
©n - 0925 0425 .1350 68519 31481
an 0575 3075 3650 15753 84247
can be written as P(x | w). Consider the example data P(®)

. =-tr- v 24
shown in Table 1. The numbers are chosen so that the c==(WE'w - pE'w) + In P@)

1

coefficient of correlation of x, and x, is .3, and each
variable has different marginal probabilities in the two
groups.

Applying Equation 1 and assuming equal prior
probabilities—namely, P(w,) = P(w,) = 4—posterior
probabilities are tabulated as shown in Table 2.

Example 2. Consider the problem assumed by the
quadratic discriminant analysis (QDA) where the con-
ditional density function Ax | @) is a multivariate
normal function defined as

fxlw; ——l—g e3-w) Six-p) O
eyl x| 2

where I, is a symmetric (d by d) matrix called the
covariance matrix and J; is the mean vector for group
Jj-Thes ipt ¢ denotes matrix transpose, and the
notation | | is the determinant of matrix X,

As linear combinations of normal density functions
are also normal, functions f{x,w;) and fx) are normal.
Unfortunately, the ratio of normal functions is not
normal, so P(w, | x) cannot be derived easily. There-
fore, classical methods like QDA resort to using dis-
criminant functions for the assignment of object x.

Discriminant functions are functions of the poste-
rior probabilities. For both LDA and QDA, the dis-
criminant functions are

gx) =1n P(w, | x)—In P(e; | x)
= In f(x,0) - In Ax,0)

P)

=In fix | o) - In fix | o),)+lnP( )

Using the normal density function (Equation 7), the
discriminant function for QDA is

gfx)=- %(x - WY (- )
Pw)
+—(x W' (x - u,)+lnm
= - JH @ - B+ ¥ - E) + €

where

It can be seen that the discriminant function is quad-
ratic in x, hence the name QDA. If the covariance
matrices are the same—that is, ;' = X' = Z-'—then
the discriminant function is reduced to

8fX)=xT'\(— W) +c

which is linear in x.

For a two-group problem, the Bayesian decision
rule (using 0-1 cost) will assign object x to group i
if g(x) > 0 and to group j if g,(x) < 0. The line g,(x)
= 0 is the separation function between the. two groups.

This example demonstrates that the knowledge of
the joint density functions f{x,w) is needed for building
the discriminant functions. Also, the results do not
reflect the posterior probabilities themselves. As far as
we know, neural networks are the only practical method
for approximating the posterior probabilities directly.

3. Theory of Least Square Estimation
Let x € R? and y € R" be vectors of random

variables and £, (x,y) be their joint distribution. The ob-
jective is to determine a mapping F: R¢ — R™ so as to

MinimizeE[z (y,--F,(x))’] ®
i=1

where the expectation E is defined over the joint
density function, and y, and F(x) are the ith component

of y and F(x), respectively. It is known (Papoulis,
1965) that the solution to the problem above is

Fx)=Ely | 1 ©)

For classification, let x be an object and y be the
target membership value, defined as

» y;= 1 if x belongs to group i, 0 otherwise
Then, F(x) becomes:

Fx)=Ely | x
=1.Py=1 lx)+o Py=0 | x
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=P(y=11x
= P(w, | %)

The above result indicates that F(x) is exactly the
posterior probability.
To further understand what it means by the solution

(Equation 9), consider the development below. (Simi- .

lar derivations are in Richard & Lippmann, 1991;
Ruck, Rogers, Kabrisky, Oxley, & Suter, 1990.) Let

Q=E [2 0= F,(x»z]
=]

=f | [2 (y.--FAx))*]f,@y)dydx

2€X Y| my

Using the 0-1 values of y, the joint density f,,(x.y)
can be expressed as f{x,w), where @ denotes the vector
of group memberships. Specifically,

[ fxw,)]
S(x,0,)

fxw)=

S, |
and the expected sum of squares can be written as

[~ i
0=f Y| 0i-Fin)F |fixw)ds

F =

=S| |T 0= Flor | fixepd

» L i=1 i

=] [a-Fer+Z F?(x)]ﬂx.w,-)dx

=l .“"L ij
The last expression comes from the definition of y,
with y,= 1 if i = j, which means that object x belongs

to group j, and y,= O otherwise. Expanding terms and
reorganizing, we have

0= .[ [2 F}(x) - F{x)- l)}ﬂx,coj)dx

i =l

=I [2"7(‘)2!(&0),)-2(2&(:)-l)/(x,wl)}dx

Fo #
-] [2 Fix)fn) - 3 @Fx) - P, | x)ﬂx)]dx
-l =)

§2

The last equation consolidates the joint probabilities
and expresses the joint probabilities in terms of the
posterior probabilities. Factoring out the marginal den-
sity, f(x), and reorganizing,

0= Im 2 [Fiw) - @F) - WP, I %)) fedx

= LX_Z[(F,(x)—P(m; | x)p (10)

+P(@; | x)(1 = P, 1x))) f(x)dx
which can be written as
Q=0%+0? (11)

where

o=]_3 P | 31 -P@ | s (12

im}

is the expected value of the total variance of the
posterior probabilities, and

o= T F@-Pw | 0pfede  (13)
z€X =l

is the total variance of the estimation errors and is 0
when

F) =P | x,i=1,...,m (14)

The quantity o3 is termed the approximation error
and o? the estimation error by Barron (1989).

When there are only two groups in the problem, it
can be simplified by letting y = 1 if x belongs to Group
1 and y = 0 if x belongs to Group 2. Then Equation
14 can be written as F(x) = P, | x).

4. Neural Networks

Artificial neural networks have been used to solve
a wide variety of problems including classification.
They are of particular interest here for their ability to
approximate any function arbitrarily closely.

The abstract network or graph in mathematics con-
sists of nodes and arcs. A neural network is a graph
used to simulate the process of information in the
brain. In neural network literature, nodes are com-

WQ*! LMgpe gpesy AW
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monly referred to as neurons or processing units, and
arcs are referred to as synapses Or interconnections.
The feedforward neural networks, the kind considered
here, are networks without closed feedback loops. The
node set is typically partitioned into three subsets—
input nodes, output nodes, and hidden nodes. A muln-
layer perceptron is a feedforward network in which
hidden nodes are arranged in layers, and only nodes
of neighboring layers are connected.

Each arc in a neural network is associated with a
weight. Let (i) denote the arc going from node i to
node j and w;; be its weight. Usually a hidden or an
output node is assigned a scalar called bias, which is
similar to the intercept in a linear regression function.
Let w,; denote the bias of node j. Consider node j. Let
S; represent the set of nodes connected into node j. If
node j has a bias, then S; has element 0. The input
received at node j is deﬁned as

x;= z wya,

ies,

where g; is the output of node i and is defined as
a;= F(x)

The function F; is called the activation function and
is usually one of two forms—logistic or linear. The
logistic function is defined as F(x) =(1 + e -5)~!, and
the linear function is Fi(x) = x. (Some authors add an
intercept and a slope to the linear function.) In almost
all applications, including this one, the input nodes
use linear activation functions. For node 0, which is
connected to node j if j has a bias, the activation value
is fixed at @, = 1.

One can view a neural network as a mapping func-
tion F: R¢ — R~ when a d-dimensional input x is
submitted to the network and an m-dimensional output
a is obtained after using the above definitions to trans-
form inputs to outputs. The attractiveness of neural
networks is their simplicity. All one needs to do for
a feedforward network is to define the network archi-
tecture—here meaning how the nodes are connected,
which nodes have biases, and which activation func-
tion is used in each node.

The weights of a neural network are determined by
training the network. In neural network literature,
training is based on a learning law that prescribes
algorithms necessary to carry out the computation. For
feedforward networks, training can be viewed as a
mathematical minimization problem—in fact, a least
square problem:

Minimize — z Y (i-ay @15)

=i i€N,

where L is the number of patterns (sample size), and
y! is the target value for pattern / and output node i.
For classification problems, the target values can be
defined as

,_ [1 if pattern I belongsto group i
Yi=10 otherwise

Looking back at Equation 8, we can see that the

network training problem is the same least square

problem in which the population mean E is estimated
by a sample mean. The remaining issue is whether
neural networks can provide an accurate estimate. This
is resolved by the following theory, adapted from Cy-
benko (1989) and Funahashi (1989), where || 1
denotes the Euclidean norm—that is, || & || = (&)
for any vector b.

Theorem 1.Let x € X c R? and y(x) be an arbitrary
continuous function. There exists a three-layer percep-
tron whose activation functions for the input and out-
put nodes are linear and for the hidden nodes are
logistic such that y(x) can be approximated arbitrarily
closely. In other words, let y(x) be the network output.
Then, for an arbitrary € 2 0, thene exists a network
such that max, || () - ) Il <

IfO<yx)<1,asin classnﬁcauon problems, the
theorem applies also for networks with output nodes
having logistic activation functions. Although the
theorem refers to only one-dimensional functions, it
applies to multidimensional functions equally well.
So, neural networks can approximate any function,
one function with one output node, as closely as de-
sired. Theoretically speaking, it may take many hidden
nodes to achieve a close approximation. In practice,
the number can be quite small, as is seen later.

§. Research Questions

The theoretical results so far can be summarized
as follows:

1. A least square estimator yields an unbiased es-
timate of the posterior probability for a classi-
fication problem with arbitrary population
distribution function.

2. Neural networks with a sufficient number of
hidden nodes can approximate any function as
closely as desired.

3. Neural network outputs can be used as least
square estimators for posterior probabilities.

It is therefore concluded that neural networks can
provide unbiased estimates. of the posterior prob-
abilities of a classification problem. There are a few
issues to be resolved for the practical application of
this theory:
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1. What is the appropriate sample size? As in all
statistical estimation, the larger the sample size,
the smaller the variance of the estimator. But,
more effort and computation time for training
are needed for large samples.

2. What is the appropriate number of hidden
nodes? Larger networks have greater power of

approximation but require more computational -

efforts. Too large a network may give rise to
problems of overfitting.

3. In practice, do neural networks provide good
estimates of posterior probabilities? How can
intervals for these probabilities be constructed
from sample data?

These questions can only be answered empirically.
A simulation study is thus developed.

6. Experimental Design

Two classification problems with known posterior
probabilities are selected. Both are two-group, two-
variable problems.

61 Example Problems

Problem 1 is Example 1 shown earlier, where the
conditional probabilities are derived from the follow-
ing assumptions:

Px,=1|l0)=2Px=1]0)=23
(16)

Px,=1 | w)=8Px=1]w)=7

This means that objects in Group 1 are more likely to
have x, or x, equal to 0, whereas objects in Group 2
are more likely to have both variables equal to 1. In
addition, the coefficient of correlation between x, and
x, in either group is assumed to be 0.3.

Let p be the coefficient of correlation. Omitting the
group notation,

p= Cov(x,,x;)
o(x,)o(x;) _

where Cov(x,.x;) is the covariance and o(x)) is the
standard deviation of x,. Using the binary values of
x, and x,, -
Cov(x,x,) = P(x, = 1, x, = 1) = E(x))E(x,)
=Px,=1,x,=1)-P(x,=1)P(x,=1)

and
54

o(x) = VP(x;= 1)(1 - P(x;=1))
Because p is fixed,

P(x, = 1, x, = 1) = po(x,)o(x;) a7
+ P, = DP(y = )

The table of conditional probabilities P(x,,x, | )
shown in Example 1 are obtained from Equations 16
and 17.

Problem 2 is the problem assumed by the quadratic
discriminant analysis as shown in Example 2. The
specific data are

51, _[5]« _[250 75
""[5]'"215]‘2"[ 75 25.0}

5, -[2250 225
=] 225 250

The off-diagonal elements of Z, and Z, are nonzero,
indicating that variables x, and x, are correlated. In-
deed, the elements are chosen so that the coefficient
of correlation p between the two variables in each

group is 0.3.

6.2. Samples

Random samples are created for both problems.
There are two types of samples—training and test sam-
ples. For each problem, there are 10 training samples
of sizes 200, 500, and 1,000. A test sample of 15,000
observations is used to represent the population. As
these are random samples, the proportion of Group 1
members (or Group 2 members) is not controlled.

63. Neural Network Architecture

The networks used are three-layer perceptrons with
two input nodes and one output node. The number of
hidden nodes is an experimental variable and ranges
from two to six. Each hidden and output node has a bias.

Each network is trained with one of the training
samples using the GRG2-based algorithm of Subrama-
nian and Hung (1993). GRG2 is a widely distributed
nonlinear programming software (Lasdon & Waren,
1986). Because it solves problems of arbitrary objec-
tive function and constraints, it can be easily adapted
for unconstrained optimization, which is the task of

“network training. The objective function for training

is the least square function (Equation 15). The target
value y is 1 for an object in Group 1 and O for an
object in Group 2. As GRG2 is a nonlinear optimizer,
it converges to a local minimum of the objective
function. To increase the likelihood of finding the
global minimum (or getting close to it), 100 different
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starting solutions are used. The results reported here
are based on the best of the 100 solutions.

7. Results

The research questions posed earlier are answered
for the two problems in this experiment. However, the
results and the answers are organized into the follow-
ing two topics—goodness of fit and interval estimation
of the posterior probabilities. For convenience, and
due to the fact that there are only two groups in both
experimental problems, the following, simpler nota-
tions are used:

1. 6(x) = P(@, | x), the posterior probability of
object x belonging to Group 1. 8 denotes the
posterior probability of an arbitrary object.

2. 6(x) is the sample estimate of O(x)\as produced
by the neural networks—that is, 8(x) = F(x) =
a(x).

7.1. Goodness of Fit

The question here is how well can neural networks
approximate the posterior probabilities. Two main fac-
tors are sample size and network architecture. Con-
sider the results in Table 3. The statistics are averages
over 10 data sets where

A
S(y-6y
L-K
sample estimate of Q.
S©-6y
L-K
estimation error o? (see Equation 11).

MSE = , the mean square error and

MSE;= , the sample estimate of the

The parameter K is the number of arc weights and
biases. For example, for a network with two hidden
nodes, there are six arcs (because there are two input

‘Table 3. Summary Statistics

nodes and one output node) and three biases; therefore,
K = 9. After each network is trained, it is applied to
the test set to obtain statistics similar to those gathered
for the training set.

72. Effect of Sample Size

Consider the results for Problem 1. The effect of the
sample size is evident from MSE; as it changes in-
versely to sample size. As sample size doubles, MSE,
is nearly halved. This holds true for both the training
sets and the test set. The effect can also be seen from
MSE, although not as clearly. The effect of sample size
is more pronounced for Problem 2. Judging from MSE,,
the decrease is faster than the increase in sample size.
The difference between the problems can be attributed
to the differences in their complexities. Problem 1,
having only four points in the data set, is much simpler
than Problem 2.

The conclusion is that increasing sample size im-
proves the goodness of fit between network output
and posterior probability.

7.3. Effect of Hidden Nodes

For the two problems considered here, Table 3
shows that the networks need not be large to achieve
good approximation. Either MSE or MSE in the train-
ing sets or the test set indicate that two hidden nodes
are not only sufficient but are also the best for all
sample sizes. So, the theoretical requirement for net-
work architecture can be met with small networks.

To get a better look at goodness of fit, we plotted
the results from the first training set using two hidden
nodes for both problem types in Figures 1 through 4.
Figure 1 is the theoretical-versus-fitted (8 vs 6) plot
for all sample sizes for Problem 1. Each dot represents
an actual scatter point. Because there are only four
different objects—in (x,,x,) space—there are four dots
for each sample size. It can be seen that sample sizes
500 and 1,000 provide very good fits.

Problem 1 Problem 2

Sample Hidden Training Set Test Set Training Set Test Set

Size Nodes

w ) MSE MSEg MSE MSEg MSE MSEg MSE MSEg

200 2 .156 .0038 155 0036 .101 0163 126 0192
3 .158 .0039 155 0036 099 .0205 129 0227
4 161 0040 155 .0036 .098 0220 132 0248
6 .166 0041 .155 0036 094 .0346 .148 0418

500 2 . .150 0015 153 0015 .108 , 0041 - A 0042
3 151 0015 .153 0015 .107 10056 114 0068
4 .152 0015 153 0015 .107 .0075 114 0074
6 .154 0015 153 0015 .106 .0083 17 0103

1,000 2 .153 .0008 152 .0008 11 0015 109 0014
3 .153 .0008 .153 .0008 REY 0021 .110 0024
4 .154 .0008 .153 .0008 1 0024 .10 0025
6 .155 .0008 .153 .0008 11 10032 a1 .0033

5§
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1.00

0.80 4
0.70 1
0.60 -

050 1

Fitted

040 1
030 J °
0.20 +

0.10 +

o L=200
o L=500
a4 L=1000

0.00 % 4 —- ¢
0.00 0.10 0.20 030 0.40

0.50 0.60 0.70 080 0.90 1.00
Theoretical

Figure 1. Problem Type 1: Scatterplot of theoretical posteriors versus fisted network outpus.

Figures 2 through 4 show similar theoretical-ver-
sus-fitted plots for Problem 2. With 200 observations
(Figure 2), the points are widely scattered, with a faint
resemblance of a logistic function. As sample size
increases to 500 (Figure 3), most of the points are in
an elongated ellipse along the 45° line. When sample
size reaches 1,000 (Figure 4), the points are tightly
packed around the diagonal line. It is interesting that
there is an arc above the diagonal (Figure 4), although
the points are not many. This may be due to the effect
of nonglobal solution. In other words, it is possible

that, with a global minimizer (unfortunately none ex-
ists today), the arc will drop down toward the diagonal
line.

Compared to the previous empirical work of Richard
and Lippmann (1991), who concluded the need for both
large samples and large networks, the results here
confirm only the need for large samples. This discrep-
ancy may be due to problem complexity. Because the
problems considered here are well defined, and no
distortions or outliers are included in the data, small
networks are able to provide good approximations.

1.00
0.90 1
080 4
070 4 _ .
0.60 + PY
°

% o0s0 ¢

&
0.40 1 L 4
030 1
020 + oe °

0.10 1 L4 g

%S 60“#
.

L)

0.00 0.10 020 030 040

Theoretical

Figure 2. Problem Type 2, L = 200: Scatterplot of theoretical posteriors versus fitted network output.
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1.00
090 1+
*0 & 0 4%
080 1+ ".. °9 .c.
o o0 ¢ ¢ % ®
070 § o % %ot s .
[ ]
PS [ ]
0.60 + i [ ] o 'Y
e, o ° ¢
% o0s0 K ' °
[ L 4 hd 0: .. ®
° 0 4 %o
0.40 1 . 3 oo
. I A 1
030 ¢ “\ . oo o
o
020 } JPelee 0o,
L X4 o°
050. s‘
010 4 t T4
* % .
0.00 -+ =

0.00 0.10 0.20 030 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Theoretical

Figure 3. Problem Type 2, L = 500: Scanterplot of theoretical posteriors versus finied nerwork output.

8. Interval Estimation of Posterior
Probabilities

Given that neural networks can approximate poste-
rior probabilities closely, the next question is: How well
can we estimate the unknown posterior probabilities
from sample data? In other words, for a given object x,
can an interval be established so that 8(x) is contained
with a given probability? The interval will have the
form 0tz 25, where ze 2 is the Z-percentile of the normal
distribution (for small sample sizes, t or other distribu-
tion may be used), and s, is the estimate of the standard

error G,, which is the square root of the estimation error.
Therefore, there are two tasks to be carried out. The first
is to determine the appropriate s, from a sample, and the
second is to determine whether the normal distribution
is appropriate for estimator 6.

8.1. Estimation of Standard Error

To determine ., the clue provided by Equation 11
may be useful. Rewrite Q (Equations 12 and 13) with
the current notation,

1.00
090 +
080 1
0.70 1
060 + »°

050 + [

Fitted

040 1

030 +

020 1

0.10 ¢

0.00 ¢ 4 4 ¢
0.00 0.10 020 0.30 0.40

050 060 070 080 09 100

Theoretical
Figure 4. Problem Type 2, L = 1,000: Scatierplot of theoretical posteriors versus fitted network outpul.
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Table 4. Estimation of 62—Problem 1

Sample % Data
Size . Xy - 8)? (1 - §) 0 - §) v2 Sets Used
200 30.0827 30.0826 .0000 7404 : .0038 100
500 72.8291 72.8291 .0000 7286 0015 )
1.000 155.0150 155.0183 .0000 9313 .0009 60
Table 5. Estimation of o2—Problem 2

Sample % Data
Size -6 81 - §) 0 - )2 v? Sets Used
200 19.7150 17.3854 0121 32168 .1667 9%
500 51.8600 49.3526 0051 22181 0045 70
1,000 111.314 107.8339 .0034 1.6745 0017 70

0= (0 =0F fax
ci=] 6(1-0)fCx
xeX

=] @-brrwas

As Q = 0} + o (Equation 11), it seems reasonable to
define the following:

20 62 - Y61 -8) as)
L-K

as the estimate of o? since (] has been shown to be a
good estimate of 6 and X(y — 0)’ a good estimate of
Q. The difficulty with s? as defined is that it may be
negative. At this point, we have not figured out a way
to ensure its nonnegativity.

To evaluate this estimate, the results for Problems
1 and 2 on networks with two hidden nodes were
further processed into Tables 4 and 5. (Recall that the
true posterior probabilities are known for these two
problems.) For comparison, the sample estimate of
o? is shown as

Y ©-8y
V="
¢ L-K

and is called the true sample variance (of error). In
each table, the last column, “% Data Sets Used,” refers
to those whose s? is positive. In Table 4, all 10 data
sets of sample size 200 have nonnegative s2, whereas
9 of the 10 sets of size 500 have positive s2. The
entries are averages of the data sets used.
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Several observations are in order:

1. The estimated variance s? is always smaller than
the true sample variance V2 in Problem 1 but
greater than V? in Problem 2 when the sample
size increases.

2. As sample size increases, V2 (and s2, in general)
decreases. Again, this shows the effect of sam-
ple size.

3. The problem of negative s is present but not
severe enough to render it useless.

82. Coverage of Interval Estimates

The question of which standardized distribution to
use is answered here by analyzing the coverage of
intervals. In general, coverage refers to the proportion
of correct intervals, which are the intervals that include
the population parameter being estimated. Two sepa-
rate analyses were carried out. The first shows the
coverage for fixed distances, and the .second shows
the coverage for standardized distances.

Coverage for fixed distances refers to the propor-
tion of observations whose posterior probability 9 j is
within a fixed distance from the estimated value 0

Specifically, an observation is covered at distance d

if it satisfies the following:
le-81<a

Coverage for standardized distances defines an ob-
servation as being covered if it satisfies

4

A
IO-OISZ
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Tables 6 and 7 show the results for fixed distances. Only
those data sets included in Tables 4 and 5 are used here.
The results are good and useful.
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Table 6. Coverages for Problem 1—Fixed Distance

Table 8. Coverages for Standardized Distances—Problem 2

Training Set Test Set Training Set Test Set
Sample Sample
Size d=.05 d=.10 d=.15 d=.05 d=.10 d=.15 Size z=l z=2 z=3 2z=1 z=2 z=3
200 658 905 971 .668 909 972 200 698 851 9111 693 854 911
500 752 1.000  1.000 747 1.000 1.000 500 155 953 991 51 0 919 957
1,000 827 1.000 1.000 .825 1.000  1.000 1,000 887 982 9% .887 981 990

1. In general, a large proportion of neural network
outputs is within a short distance of the true posterior
probabilities. For example, with sample size 1,000,
82.7% of the outputs are within .05 of the posterior
probabilities of Problem 1, and 88.4% are within the
same distance for Problem 2. The results in the test
set confirm the accuracy of these coverages.

2. Again, the effect of sample size is shown. For
better results, one should increase the sample size.

3. For discrete problems like Problem 1, all net-
work outputs are within .10 of the true posterior prob-
abilities when sample size is more than 500.

Table 8 shows the results for standardized distances
for Problem 2. Problem 1 is not included here because
the estimated standard error s, is O for all sample sizes.
For comparison, coverages under the normal distribu-
tion are also shown.

1. The consistency between training set results and
test set results confirms the accuracy of these cover-
ages.

2. Consider sample size 1,000. That the training
set and test set coverages for z below 1 (and those for
z below 2) are higher than those under the normal
distribution indicates that the distribution of the sam-
ple estimates  are more concentrated than the normal.
Therefore, in most cases, using the normal variable z
will provide a conservative estimate of the confidence
level. In other words, if one uses zqo = 1.645 as the
distance, the resulting interval will have coverage no
Jess than .90.

9. Condusions

In this article, we try to provide a self-contained
description of the application of neural networks to the
classification problem. The main issue addressed here
is how well neural networks estimate the posterior
probabilities of the objects to be classified. An experi-

Table 7. Coverages for Problem 2—Fixed Distance

Training Set Test Set
Sample
Size d=.05 d=.10 d=.15 d=.05 d=.10 d=.15
200 $9 741 857 S81 .10 849
500 673 890 961 677 893 958

1,000 884 986 995 887 986 995

Normal 683 954 997

ment with two substantially different problems was
conducted. The experimental subjects are limited by the
requirement that their posterior probabilities be com-
putable.

The results from the two problems are quite good
and can be summarized as follows.

1. Sample size is important. One should strive for
large random samples.

2. For the problems considered here, networks
with small numbers of hidden nodes provided
good estimates.

3. The issue of nonglobal solution remains unre-
solved, although it is suspected to cause some
errors in the estimate.

4. Overall, the estimates from neural networks are
good estimates of the true posteriors. Most of
the estimates are within a small distance of the
true values.

5. Although the sample standard error s, does not
seem to be a very good estimator of the true
error V,, it can still be used to construct intervals
with confidence levels better than those of the
normal distribution.

The issue with negative s, remains open. The reso-
lution of that will likely lead to a more accurate esti-
mator of V,. But, the standard error is not necessary
to provide good interval estimates of the true posterior.
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