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Using Neural Networks To Predict the Onset of Diabetes Mellitus'
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Classification is an important decision making tool, especially in the medical sciences. Unfortunately, while
several classification procedures exist, many of the current methods fail to provide adequate results. In
recent years, artificial neural networks have been suggested as an alternative tool for classification. Here,
we use neural networks to predict the onset of diabetes mellitus in Pima Indian women. The modeling
capabilities of neural networks are compared to traditional methods like logistic regression and to a specific
method called ADAP, which has been used to predict diabetes. The results indicate that neural networks
are indeed a viable approach to classification. Furthermore, we attempt to provide a basis upon which
neural networks can be used for variable selection in statistical modeling.

1. INTRODUCTION

Classification has emerged as an important decision
making tool. It has been used in a variety of applications
including credit scoring,? prediction of events like credit card
usage' and tender offer outcomes,?' and as a tool in medical
diagnosis.*'828 Unfortunately, while several classification
procedures exist,> many of the current methods fail to
provide adequate results.

In recent years, artificial neural networks (ANNs) have
been suggested as an alternative tool for classification.5® The
idea of neural computing grew out of a desire to capture
pattern recognition capabilities of a biological brain. Mc-
Culloch and Pitts® developed the first model of a physi-
ological brain called McCulloch—Pitts neuron, which became
the basis for almost all artificial neural networks where nodes
are likened to neurons and arcs to dendrites or axons. Now,
ANNs have been developed for recognition of such ill-
defined objects as handwritten characters,'S-'” finger prints,'6
and double spirals.”® They also have been developed for
detection of faults in a chemical process,” explosives in
airline baggage,”’ and prediction of bank failures.3®> ANNs,
unlike traditional classifiers like linear discriminant analysis
and quadratic discriminant analysis, are nonparametric and
are able to adjust the form of the discrimination to fit the
data. As ANNs can approximate, arbitrarily closely, any
mapping function,'” they might prove to be useful classifica-
tion tools.

In this paper, we evaluate the effectiveness of ANNs
classifiers in forecasting the onset of non-insulin-dependent
diabetes mellitus among the Pima Indian female population
near Phoenix, AZ.'%1'2% The dataset used is that considered
by ref 28, where they use a model called ADAP in predicting
the onset of diabetes mellitus. Here, we first use ANNs to
model the relationship between the onset of diabetes mellitus
and various risk factors for diabetes among Pima Indian
women. We then empirically compare the performance of
ANNs with logistic regression and ADAP. Comparisons are
made on the ability to identify significant factors and overall
prediction of diabetes.

" Key words: Neural networks, medical diagnosis, classification.
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The next section describes the dataset used. Section 3
describes logistic regression and neural networks and their
application to classification problems. Results of such
empirical application are in section 4, and conclusions are
in section 5.

2. DATA

2.1. Pima Indian Population. The population for this
study is the Pima Indian female population near Phoenix,
AZ. This population has been under continuous study since
1965 by the National Institute of Diabetes and Digestive and
Kidney Diseases because of its high incidence rate of
diabetes.'*!! Each community resident over 5 years of age
was asked to undergo a standardized examination every two
years, which included an oral glucose tolerance test. Dia-
betes was diagnosed according to the World Health Orga-
nization criteria;* that is, if the 2 h post-load plasma glucose
was at least 200 mg/dL (11.1 mmol/L) at any survey
examination, or if the Indian Health Service Hospital serving
the community found a glucose concentration of at least 200
mg/dL during the course of routine medical care.'® This
database provides a well validated data resource for exploring
the prediction of the date of onset of diabetes.?228

2.2. Variable Selection. Eight variables were chosen for
predicting the onset of diabetes in Pima Indian women. These
variables, described below, were considered as they have
been found to be significant risk factors for diabetes among
Pima Indians and other populations.® The variables chosen
are

enumber of times pregnant (PREGNANT)

eplasma glucose concentration at 2 h in an oral glucose
tolerance test (GTT)

ediastolic blood pressure (mmHg) (BP)

etriceps skin fold thickness (mm) (SKIN)

*2-h serum insulin (#U/mL) (INSULIN)

ebody mass index (weight in Kg/(height in m)?) (BMI)

ediabetes pedigree function (DPF)

eage (years)

The diabetes pedigree function (DPF) was developed by
Smith ez al.®8 to provide a synthesis of the diabetes mellitus
history in relatives and the genetic relationship of those
relatives to the subject. The DPF uses information from
parents, grandparents, siblings, aunts and uncles, and first
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cousins. It provides a measure of the expected genetic
influence of affected and unaffected relatives on the subject’s
eventual diabetes risk. See ref 28 for further details.

2.3. Case Selection. Diabetes is defined as a plasma
glucose concentration greater than 200 mg/dL 2 h following
the ingestion of 75 g of a carbohydrate solution.3* Cases
selected for this study met the following criteria:

The subject was female and older than 21 years.

«Only one examination, one that revealed a nondiabetic
GTT and met either of the two following criteria, was
selected per subject:

1. Diabetes was diagnosed between one and five years
after the examination, or

2. Diagnosis five or more years later failed to reveal
diabetes

«Cases where diabetes was diagnosed within a year of the
examination were dropped from the model as they were
considered potentially easier to predict.

Based on the above criteria, 768 cases were selected for
analysis, of which 268 cases were diagnosed with diabetes.
As the dependent variable in this case is binary valued (1 if
diabetes is diagnosed, 0 otherwise), the problem evolves into
one of classification.

The next section presents a brief review of logistic
regression and neural networks and their application to
classification problems.

3. CLASSIFICATION METHODS

3.1. Logistic Regression. The logistic regression model,
or logit model, may be applied when the data consist of a
binary response and a set of explanatory variables. Specif-
ically, let the response, Y, of an individual take on one of
two values, denoted for convenience by 0 and 1 (for example,
here, Y = 1 indicates that diabetes is present, otherwise Y
= 0). Suppose X is a vector of explanatory variables, and
6 = P(Y = 1|X) is the response probability to be modeled.
The linear logistic model then has the form

logit(6) = log(l 6 0) =a+pX

where o is the intercept parameter, and 3 is the vector of
slope parameters. Therefore, the logit is the logarithm of
the odds of success, the ratio of the probability of success
(0) to the probability of failure (1 — 6). The maximum
likelihood estimates of the parameters of the logistic regres-
sion model can then be estimated using an iteratively
reweighted least squares algorithm.?' Once the parameters
are estimated, it is possible to calculate the predicted
probability of an individual having diabetes (Y=1)as
follows

__exp(@a+pX)
"1+ exp(a+ BX)

A response is then classified based on the value of 6 and a
predetermined critical probability value.

The logistic regression model shares a common feature
with a more general class of models first proposed by Nelder
and Wedderburn? in that a function g = g() of the mean
of a response variable is assumed to be linearly related to
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the explanatory variables. Since the mean u implicitly

- depends on the stochastic behavior of the response, and the

explanatory variables are assumed fixed, the function g
provides the link between the random (stochastic) component
and the systematic (deterministic) component of the response
variable Y. For this reason, g is referred to as a link
function.??

While detection of outliers and other diagnostics have
widespread use in linear regression, there is not yet an
accepted body of methods for logistic regression. Pregibon,”
Landwehr, Pregibon and Shoemaker,'? and Cook and Weis-
berg? have presented some approximate diagnostics roughly
equivalent to many of the methods for linear regression.
Jennings® discusses the application of two such approximate
diagnostics to logistic regression.

The next section discusses neural networks and its ap-
plication to classification problems.

3.2. Artificial Neural Networks. 3.2.1. Neural Net-
works for Classification. An artificial neural network
(ANN) is a system of interconnected units called nodes, and
is typically characterized by the network architecture (layers,
and connections or links among the nodes) and its node
functions.

Let G = (N,A) denote a neural network where N is the
node set and A the arc set containing only directed arcs. G
is assumed to be acyclic in that it contains no directed circuit.
The node set N is partitioned into three subsets: Nj, No, and
Nu. Njis the set of input nodes, No is that of output nodes,
and Ny that of hidden nodes. In a popular form called the
multilayer perceptron, all input nodes are in one layer, the
output nodes in another layer, and the hidden nodes are
distributed into several layers in between. The knowledge
learned by a network is stored in the arcs and nodes in the
form of arc weights and node values called biases. We will
use the term k-layered network to mean a layered network
with k — 2 hidden layers.

When a pattern is presented to the network, the variables
of the pattern activate some of the neurons (nodes). Let
o represent the activation value at node i corresponding to
pattern p

2 & ifieN,
P T \FGP) ifieNgUN,

where ¥/, i = 1, ..., n are the variables of pattern p. For a
hidden or output node i, y” is the input into the node and F
is called the activation function. The input, representing the
strength of stimuli reaching a neuron, is defined as a weighted
sum of incoming signals

yip = Zwkta:
k

where wy; is weight of arc (k,i). In some models, a variable
called bias is added to each node. The activation function
is used to activate a neuron when the incoming stimuli are
strong enough. Today, it is typically a squashing function
that normalizes the input signals so that the activation value
is between 0 and 1. The most popular choice for F is the
logistic function,>** and it is given by

Fo)=1+e™™
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Figure 1. A neural network with two hidden nodes.
Table 1. Classification Percentage for Training and Test Samples by Hidden Nodes
training results test results

hidden nodes group 1 group 2 overall MSE group 1 group 2 overall
0 88.89 56.57 71.78 0.1578 90.16 58.57 78.65
1 87.30 58.59 77.43 0.1555 90.16 65.71 81.25
2 88.89 61.11 79.34 0.1557 90.16 57.14 78.13
3 90.74 64.65 81.77 0.1465 86.89 48.57 72.92
4 91.80 67.17 83.33 0.1376 81.97 48.57 69.79
5 89.42 69.70 82.64 0.1344 84.43 51.43 72.40
logistic regression 88.89 56.06 77.60 92.62 5571 79.17

Then, the neural computing process is as follows: The
variables of a pattern are entered into the input nodes. The
activation values of the input nodes are weighted (with wy’s)
and accumulated at each node in the first hidden layer. The
total is then squashed (by F) into the node’s activation value.
It in turn becomes an input into the nodes in the next layer,
until eventually the output activation values are computed.
Figure 1 shows the basic topology of the type of neural
network used in our study. The network consists of two
input nodes, two hidden nodes, and one output node.
Connections exist from the input nodes to the hidden nodes

and also directly to the output node. Node biases exist at
all hidden and output nodes, and the activation function used
is the above-mentioned logistic function.

Before the network can be used for classifying a pattern,
the arc weights must be determined. The process for
determining these weights is called training. A training
sample is used to find the weights that provide the best fit
for the patterns in the sample. Each pattern has a target value
£ for output node i. For a two-group classification prob-
lem, only one output node is needed, and the target can be
# = 0 for group 1 and 1 for group 2. In order to measure
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Table 2. Classification Results Using Neural Networks with One
Hidden Node

variables training test
excluded classification classification  no. of

from the model  percentage percentage  variables F-ratio

A: Variables Dropped Include
none 77.43 81.25 8
PREGNANT 78.65 78.65 7 9.23
GTT 73.61 72.40 7 44.88
BP 7743 80.73 7 8.42
SKIN 78.99 78.65 7 1.50
INSULIN 7743 83.85 7 8.47
BMI 75.87 78.13 1 14.56
DPF 79.51 76.56 7 7.43
AGE 78.65 78.65 7 2.33

B: Variables Dropped Include SKIN and
PREGNANT 78.30 79.17 6 4.86
GTT 73.09 66.67 6 2331
BP 77.08 78.13 6 3.53
INSULIN 78.99 79.17 6 0.64
BMI 77.08 78.13 6 8.07
DPF 76.39 77.08 6 7.72
AGE 78.99 717.60 6 1.76
C: Variables Dropped Include SKIN, INSULIN, and
PREGNANT 78.47 80.73 5 3.58
GTT 71.70 69.27 5 17.24
BP 77.08 717.60 5 1.35
BMI 76.91 80.21 5 4.60
DPF 78.13 78.65 5 1.45
AGE 77.78 78.13 5 2.83
D: Variables Dropped Include SKIN, INSULIN, BP, and

PREGNANT 71.26 78.65 4 1.14
GTT 71.35 68.23 4 13.45
BMI 75.87 . 79.69 4 4.19
DPF 76.91 717.60 4 2.76
AGE 77.26 78.65 4 3.80

E: Variables Dropped Include

SKIN, INSULIN, BP, PREGNANT, and

GTT 73.44 69.79 3 10.95
BMI 76.04 80.73 3 348
DPF 77.08 80.21 3 2.17
AGE 77.26 79.69 3 4.07

F: Variables Dropped Include

SKIN, INSULIN, BP, PREGNANT, DPF, and

GTT 69.44 69.27 2 10.74
BMI 75.87 79.17 2 4.00
AGE 76.56 78.13 2 393

Table 3. Classification Results Using Logistic Regression

variables wald x-square
excluded training test no. of for variable
from the classification classification variables  excluded from
model percentage  percentage in the model  the model
A: Variables Dropped Include
none 77.60 79.17 8
SKIN 77.78 79.17 7 0.0078
B: Variables Dropped Include SKIN and
AGE 78.13 79.69 6 0.5422
C: Variables Dropped Include SKIN, AGE, and
INSULIN 77.95 78.65 5 1.3194
D: Variables Dropped Include SKIN, AGE, INSULIN, and
BP 76.91 80.21 4 3.6934

the best fit, a function of errors must be defined. Let E?
represent a measure of the error for pattern p

p=Y -
ieNg

where [ is a nonnegative real number. A popular choice is
the least squares problem where [ = 2. The objective is to
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minimize ¥, E?, where the sum is taken over the patterns in
the training sample.

The neural network training system used in this research
was developed by Subramanian and Hung? and is based on
a well-known nonlinear optimizer called GRG2."* GRG2
is a widely distributed system, available even in popular
spreadsheet programs like Microsoft Excel, and has been
shown to be particularly effective for highly nonlinear
problems like those in neural network training. All math-
ematical optimizers use strictly descend methods, which
means they all converge to a local minimum. To guarantee
descend, a gradient is computed after all the training patterns
have been evaluated. So training epoch, in the terminology
of the back-propagation algorithms, is defined for the entire
training set, rather than for each training pattern. Since our
algorithm is not related to back-propagation, parameters like
learning rate and momentum are not necessary (see ref 29
for further details).

For classification, the output node with the maximum
activation value is used to determine the class of the pattern.
For example, in a neural network classifier with a single
output node for two group classification, the pattern is
classified as group 1 (#* = 0) if the output value is less than
0.5, into group 2 otherwise. Under proper assumptions, it
can be shown that the least square estimator, as our neural
networks are, yields the optimal Bayesian classifier.26°2 That
is, neural network output estimates posterior probabilities.
This allows one to relate neural networks to traditional
statistical classifiers.

As with logistic regression, there is not yet an accepted
body of works for outlier detection in neural networks. As
neural network training involves least-squares estimation, the
influence of outlying observations exist. But unlike linear
regression, in neural networks points closer to the separation
function appear to have greater influence on the separation
function than points farther away.

Perhaps the critical concerns one might have in applying
neural networks are problems associated with the interpreta-
tion of weights and its inability to perform statistical testing.
Traditional statistical procedures rely on distributional as-
sumptions in order to perform testing. The behavior of the
error distribution in neural networks is not well understood.
This study uses the Pima Indian diabetes dataset to illustrate
neural networks for variable selection.

3.2.2. Analysis. Artificial neural networks are used to
study the relationship between performance and the explana-
tory variables. As in regression, we take the approach of
“parsimony” in building our neural network model to explain
the onset of diabetes. As such, two interrelated questions
need to be answered:

«What is the appropriate neural network architecture for
this data set?

«What combination of variables will provide the best
explanation for the onset of diabetes?

Network architecture refers to the number of layers, the
number of nodes in each layer, and the number of arcs and
nodes they connect. Other network design decisions include
the choice of activation functions and whether to include
biases or not. Patuwo, Hu, and Hung® find that networks
with one hidden layer is sufficient for most problems. As
such, all networks considered in this research have one
hidden layer. Also, node biases occur at all hidden and
output nodes, and the activation function used is the logistic
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Table 4. Final Classification Results: Neural Networks vs Logistic Regression

training results test results
method group 1 group 2 overall group 1 group 2 overall no. of variables
A: Results Based on Final Model Chosen by Neural Network (GTT, BMI, and AGE)
neural network 88.62 55.05 77.08 87.70 67.14 80.21 3
logistic regression 87.30 53.03 75.52 90.98 61.43 80.21 3
B: Results Based on Final Model Chosen by Logistic Regression (PREGNANT, GTT, BMI, and DPF)
neural network 89.42 58.59 78.82 89.34 60.00 78.65 4
logistic regression 88.89 54.04 76.91 90.98 61.43 80.21 4

function. Unlike previous studies where neural network
connections existed only between adjacent layers, for ex-
ample, in a three-layered network between the input layer
and the hidden layer but not between the input and the output
layer, here we consider networks that can have direct
connections between any two layers in the network. Thus,
in a three-layered network, direct connections can also exist
between the input and the output layer (see Figure 1). These
types of networks are a superset of the networks considered
previously and therefore provide greater flexibility in model-
ing different functional forms.

A related question is the choice and the number of
variables to use for explaining the onset of diabetes. Here,
we use a backward-elimination, stepwise approach for

determining the subset of predictor variables to use in our .

neural network model. Starting with the full list of variables,
at each step in our variable selection, we eliminate the
variable with the smallest F ratio of all the variables in the
model. We stop our process when the F-ratio for all the
variables is greater than some predetermined number, say
F-OUT.

The F-ratio used here is similar to that used in regression
analysis. In the basic structure, a reduced model is compared
to a full model, where the reduced model is obtained by
dropping some variables from the full model. In neural
networks, this is equivalent to considering fewer input nodes,
where variables associated with the discarded input nodes
are exempt from further consideration. The F-ratio is

(SSE, — SSE;)

(df R pr)
SSE,

dfr

where SSEr and SSEr represent the objective value
= Z;=, Zieno(@ — )%, where the summation is over all
input patterns and output nodes) for the reduced and full
networks, respectively, and df and dfr represent the degrees
of freedom of the respective models. The degrees of
freedom, in general, is defined as df = (number of input
patterns — number of parameters estimated). For example,
consider a neural network with eight input nodes, two hidden
nodes, and one output node. Using Figure 1 as a reference,
the number of arc weights estimated is 26. There are node
biases at each hidden and output node. Therefore, the total
number of parameters estimated for this neural network
model is 29 (26 + 3). Our input dataset contains 768
observations, giving df = 768 — 29 = 739.

Clearly, dfg = dff, since the full model would estimate
more parameters than the reduced model, if the number of
hidden and output nodes remain the same for both models.
But, (SSEr — SSEy) is not necessarily greater than or equal

F=

to zero. Unlike regression analysis, neural network training
is an unconstrained, nonlinear optimization problem. As
such, the global minimum for a given problem cannot be
guaranteed. Therefore, it is possible that for a particular
problem instance SSEz < SSEr. To ensure that the objective
value (SSE) is a nonincreasing function as the number of
variables in the model increase, each neural network model
is trained with a large number of starting weights. Among
the solutions that are determined from these various starting
weights, the solution with the minimum objective value is
chosen for that particular model. This strategy is repeated
for all neural network models considered. While this strategy
does not ensure a global minimum, it does increase the
confidence in the results. For our problems, the above
strategy did provide nonincreasing objective values as the
number of variables in the model increased.

The validity of the F-test in regression is under the
assumption of normality of residuals. As indicated by
Richard and Lippmann,? the predicted values of neural
networks approximate the posterior probabilities when the
network architecture and sample size are large. The posterior
probability in our study refers to the probability that a pattern
belongs to group 2 (the subject developed diabetes). The
output of neural networks is not normally distributed. Thus
the F-ratio in our study serves only as a guide for variable
selection and will not be used for significance testing.

The next section discusses the results.

4. RESULTS

As in ref 28, the entire sample of 768 was first randomly
divided into a training and a test sample, with 576 cases
used for training, and 192 for test. The training sample had
378 subjects without diabetes, and 198 subjects with diabetes.
For the test set, 122 subjects did not develop diabetes, while
70 did.

In this study, the number of hidden nodes was varied from
0 to 5. Using the mean square error (the objective value
adjusted for degrees of freedom) as a criterion, the final
architecture chosen had one hidden node. As shown in Table
1, the mean square error (MSE) for the network with one
hidden node is less than that of the neighboring hidden nodes,
i, 0and 2. While the MSE for three or more hidden nodes
is smaller than that of one hidden node, our objective is to
use the smallest model that will adequately predict the onset
of diabetes, as such, we choose the network with one hidden
node for further analysis.

This network produces a training classification percentage
of 77.43 and a test classification of 81.25 (Table 1). For
logistic regression, these classification percentages are 77.60
and 79.17, respectively (Table 1). In contrast, the test
classification achieved by the ADAP model® is 76%. The
authors?® do not mention the classification on the training
set.
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We undertake two separate procedures to compare neural
networks and logistic regression in terms of their modeling
capability. The first approach relies on using the F-ratio in
the training sample as the criterion for deleting variable(s)
from the neural network model. Table 2A shows that SKIN
is the prime candidate for deletion, with an F-ratio of 1.50.
With SKIN deleted, the network with one hidden node is
rerun. The F-ratio for INSULIN is the smallest at 0.64
(Table 2B). At the third stage, BP with an F-ratio of 1.35
is dropped from the model (Table 2C). The next variable
to be deleted is PREGNANT with an F-ratio of 1.14 (Table
2D). For a predetermined F-OUT of, say, 3.00, the elimina-
tion process stops with DPF being dropped from the model
(Table 2E). In the final model (GTT, BMI, and AGE), each
variable has an F-ratio greater than 3.00 (Table 2F). Using
these variables, the training and test classification percentages
for the neural network model is 77.08 and 80.21, respectively
(Table 4A). Using logistic regression with the same set of
variables (Table 4A), the training and test classification
percentages are 75.52 and 80.21, respectively. Thus, neural
network provides better training results and test results
comparable to logistic regression.

In the second comparison procedure, we apply the
backward elimination procedure onto logistic regression for
selection of variables. We sequentially deleted variable(s)
that are the least statistically significant (at the 0.05 level)
in the training sample. With all variables in the model, SKIN
had a y-square statistic of 0.0078 and is only significant at
0.9298 (Table 3A). Logistic regression was rerun with the
remaining variables in the model. At this second phase, AGE
was dropped from the model (p-value = 0.4615; Table 3B).
INSULIN and BP were deleted at the third and fourth stages,
respectively (Tables 3C and 3D). With the deletion of SKIN,
AGE, INSULIN, and BP, the remaining variables were all
statistically significant at the 0.05 level. As indicated in
Table 4B, logistic regression with PREGNANT, GTT, BMI,
and DPF has an overall training classification rate of 76.91
and a test classification of 80.21. Neural networks using
the variables selected by logistic regression produced a
training rate of 78.82 and a test rate of 78.65 (Table 4B).
Neural networks provide better training results, but a slightly
lower test classification rate than logistic regression.

As shown in Tables 2—4, both approaches to variable
selection result in similar variables being retained in the
model. In fact, if F-OUT is set to 2.00, the variables selected
by neural networks are GTT, BMI, DPF, and AGE, while
the backward elimination procedure in logistic regression
retains GTT, BMI, DPF, and PREGNANT. Thus, the only
difference is that neural network retains AGE, while logistic
regression retains PREGNANT. With either set of variables,
both neural network and logistic regression provide better
results than ADAP.

5. CONCLUSIONS

The use of neural networks for classification is just now
growing. For this particular application in predicting the
onset of diabetes, we believe the results are interesting and
will lead to further research on how the technique can be
used for statistical testing purposes. Some previous research
has indicated the performance of neural classifiers depends
very much on the domain of applications. As indicated by
Lippmann,'” neural network users should first experiment
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on what architecture to use before finalizing on the results.
Skipping this critical step will render neural classifiers less
effective. In addition, prior applications of neural networks
failed to recognize the sensitivity of the technique with
respect to initial starting weights. Classification rates can
be very different depending on the initial arc weights used.

Our study shows that neural networks are indeed appropri-
ate for predicting the onset of diabetes. The chance
probabilities of classification in training and test samples are
around 55%, while the classification rates achieved by neural
networks are around 78% in training and 81% in the test
sample.

This study also proposes a viable approach to using neural
networks as a modeling tool. The F-ratio is a good indicator
of the variance in the dependent variable explained by the
predictor variables adjusted for degrees of freedom. The
results appear to support this for variable selection in neural
networks. Classification results using the reduced model
(Table 4) are comparable to that using all variables (Table
1). But, since the normality assumption is violated in neural
networks, statistical testing is not appropriate at this time.
Further research is needed in this direction.
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