ORSA Journal on Computing
Vol. 5, No. 1, Winter 1993

0899-1499 /93 /0501-0054 $01.25
© 1993 Operations Research Society of America

Measuring Congestion for Dynamic Task
Allocation in Distributed Simulation

MURALI S. SHANKER / Department of Administrative Sciences, Kent State University, Kent, OH 44242, (216) 672-2750;
Email: mshanker@scorpio.kent.edu

W. DavID KELTON / Department of Operations and Management Science, Carlson School of Management, University of
Minnesota, Minneapolis, MN 55455, (612) 624-8503; Email: dkelton@ux.acs.umn.edu

ReEMA PADMAN / School of Urban and Public Affairs, Carnegie Mellon University, Pittsburgh, PA 15213,
(412) 268-2180; Email: rp25@andrew.cmu.edu

(Received: June 1991; revised: February 1992; accepted: April 1992)

An important factor affecting the performance of distributed
simulations running on parallel-processing computers is the
allocation of logical processes to the avallable physical pro-
cessors. An inefficient allocation can result in excessive com-
munication times and unfavorable load conditions. This leads
to long run times, possibly giving performance worse than that
with a uniprocessor sequential event-list implementation. But
the efficiency of any allocation strategy is dependent on the
metric, or measure, it uses to characterize the load in the
distributed system. This paper presents a simple and intuitive
way of measuring and reallocating the load when the objective
is to minimize simulation run time. The metric, based on esti-
mating measures of message utilization at each processor, has
been used in an adaptive scheme for load allocation, and
experiments on an iPSC /2 Hypercube indicate that it success-
fully characterizes the load for purposes of reducing simulation
run time.

With advances in parallel machines, Distributed Simula-
tion (DS) has become a viable way of dealing with time-
consuming simulations. An important factor affecting the
performance of DS models, like the Chandy and Misra
model for DS/® 7 22! is the allocation of logical processes
(LPs) to available (physical) processors. The objective in
making an assignment is to reduce the realized run time of
the simulation. An inefficient assignment can result in
excessive communication times, bottleneck processors, and
unfavorable load conditions leading to long run times,
possibly giving performance worse than that with a unipro-
cessor, sequential event-list implementation.

The problem of assigning LPs to processors is one
instance of the task-allocation problem found in distributed
systems, and it is NP-complete.l'®! Similar problems exist in
other fields. For example, in flexible manufacturing sys-
tems (FMS) we might seek to allocate a limited set of
expensive tools to machine groups to maximize the
throughput of jobs, where there is limited storage space
between machines. A simple analogy to the current research
is to view the tools as LPs, the machines as processors, the

Subject classtfications. Simulation. Efficiency.
Other key words: Distributed simulation.

jobs as messages, and the limited space between machines
as 1/0 buffer space. Another area is in managing traffic
flow into and out of major roadways by controlling the
entry points. In most instances, what is needed is a mea-
sure to define the congestion at an entry point so that
access is controlled to maximize the flow. While it is harder
to formulate this problem in terms of the current research,
the congestion metric developed here could provide insight
helpful in analysis and management of such systems. Vari-
ous solution methods have been proposed for task-
allocation problems, and they can be broadly classified
into two groups: static schemes,['% 14 17:1% 21 and dynamic
schemes .- 11- 14 20 Giatic schemes perform the allocation of
tasks to processors once, typically at the beginning of the
simulation, while dynamic schemes try to react to changes
in the load on the system, and then make a reallocation.
The LPs may be reallocated many times during the simula-
tion using dynamic schemes. Static schemes are usually
easier and less expensive (in terms of overhead) than
dynamic schemes. But dynamic strategies are more appro-
priate for situations such as in DS where the load dis-
tribution is likely to change unpredictably during the
simulation.

An essential element in all schemes is the metric, or
measure, used to meet an objective. For example, Lu and
Carey®" use the sample variance of load distribution across
the processors to balance the load on the system and
minimize communication costs. In [10], Chu and Lan use
intertask communication time and processor execution time
as a measure to minimize the bottleneck processor utiliza-
tion. Different metrics can be used to satisfy the same
objective; the above two metrics could be used to balance
the load in the system. However, the metrics and allocation
strategies discussed in the literature are not particularly
suited for Distributed-Simulation Task-Allocation (DSTA)
problems. This paper develops a congestion metric, cen-
tered around message utilization at the processor, suitable
for problems where the objective is to minimize the run

Copyright © 2001 All Rights Reserved

Congestion for Dynamic Task Allocation

time of the simulation. By run time we mean a realization
that is a function of the underlying simulation and the
strategy adopted for implementation. Thus for simulations
using the same random numbers for identical purposes,
different strategies could lead to different realizations of
run time. Any strategy lowering this run time would then
lead to a lower expected run time of the simulation.

The metric has been used in an adaptive scheme for task
allocation,”* %7 and experiments on an iPSC/2 Hypercube
indicate that it successfully characterizes the load on the
system for reducing simulation run time. While the
DS model used in the experiments was the Chandy/
Misra model[® 7?1 it is felt that the metric can also be
adapted to task allocation in “optimistic approaches” such
as the time-warp mechanism.[%!

The next section describes the DSTA problem. Section 2
summarizes the results of load allocation strategies from
the current literature, while Section 3 presents the conges-
tion metric. Sections 4 and 5 discuss its applicability for
dynamic task-allocation schemes. A brief overview of the
implementation of the congestion metric in an adaptive
scheme is given in Section 6. Results and conclusions are
presented in Sections 7 and 8, respectively.

1. The Distributed Simulation Task-Allocation Probiem

A particular assignment of LPs to processors can be repre-
sented as a mapping M (M: LP, > P, i=1,...,¢, j=
1,..., d), where ¢ is the number of LPs in the model, and d
is the number of processors available (the mapping is read
as assigning LP i to processor j). The objective is to find a
mapping to minimize the run time of the simulation.

To execute the simulation on a parallel-processing
machine we develop a mapping such that processor P, will
execute all messages corresponding to the LPs assigned to
it in the mapping. The arrival of a message to LP, results in
additional work to be executed at that LP, or on processor
P, to which LP, is assigned. The execution time for a
message on all processors is assumed to be positive but
finite.

Messages originate at LPs called source LPs. They are
then sent to the next LP in the logical structure where they
are processed, and then sent to the next LP, etc., until
finally they leave the system. The last LP visited before a
message leaves the system is called the sink LP.

As an example, consider the logical system in Figure 1.
Figure 2 shows a mapping to four identical processors. The
communication time between processors is assumed to be
negligible (see Section 5.1 for a relaxation of this assump-
tion). Here, messages originate from LP, (the source), and
leave the system from LP,, (the sink). LP, is a branch point,
with messages going to LP, and LP; with equal (and
independent) probabilities.

0.5

05

Fgure 1. A logical system with 10 LPs.

k,

Fgure 2. A possible assignment of LPs to processors.
Beginning LPs: 1,4, 8,9. Ending LPs: 3,7, 8, 10.

For such systems, the time spent by a message in the
system depends not only on the processor execution time
and communication times, but also on the congestion at the
processors and the precedence relationship to be satisfied
for each message. Congestion and precedence relationships
influence the waiting time. The precedence relationship for
a message is determined by factors like the location of the
message in the network, the message type, the time stamp
of the message, the channel in which the message arrived,
the queue discipline for messages, and the characteristics
of the physical system being simulated.

A simulation is usually stochastic in nature, which results
in a varying number of events for each run. For a dis-
tributed simulation, it results in an unknown number of
messages (and hence tasks) at each LP for each run of the
simulation. Therefore, in a distributed scheme the load
(total amount of work) on the system cannot be determined
before the simulation is started, and the load on each LP
may change substantially throughout the simulation.

Thus, the total time at LP, (ie., on P) for a message m
depends on the mapping as well as the amount of work
needed for that message to be processed, and any map-
ping seeking to minimize the run time must look beyond
execution times.

The performance of the simulation is also affected by the
characteristics of the host computer. While factors such as
the speed of the processors and communication channels
directly affect run time, the effect of a factor like the buffer
space available for pending messages is more subtle. A full
buffer at a processor may cause the computer (or the
operating system) to resort to one of two actions: Proces-
sors may be blocked from further processing until the
buffer space is cleared, or the simulation may abort. In
either case, time is wasted, leading to a deterioration in the
run-time performance of the simulation. While a full buffer
at a processor usually indicates that the arrival rate A of
messages is greater than the service rate u at that proces-
sor, in DS a full buffer could occur even when A < u. This
is because precedence relationships have to be satisfied at

Copyright © 2001 All Rights Reserved

Shanker, Kelton and Padman

each LP. It is therefore important to recognize and correct
such unstable situations if distributed simulations are to
run efficiently on parallel-processing computers.

A mapping of LPs to processors with the objective
of minimizing the run time of a simulation should thus
consider the following:

® The exact number of messages, and hence work, to be
processed by the system is not known beforehand.

® The load on each LP can vary from run to run.

e Precedence relationships to be satisfied for a particular
message at LP, depend on the location and clock values
of the messages, and on the structure of the physical
system.

o The characteristics of the computer being used.

The Distributed-Simulation Task-Allocation problem (to
distinguish it from earlier task-allocation problems) can
then be defined as: Given a computer system with a fixed
number of processors P,j=1,...,d (not necessarily
homogeneous), a logical system with ¢ logical processes,
LP,i=1,...,c find a mapping M: LP, - P,i=1...,¢
j=1,...,d), dynamic or static, such that the run time of
the simulation is minimized.

2. Strategies for Task Allocation
As mentioned earlier, solutions to task-allocation prob-
lems (TAPs), sometimes referred to as load-sharing or load-
balancing strategies, can be broadly classified into two
categories: static or dynamic. A static decision is made
independent of the current state, while a dynamic decision
may depend on the state of the system. While many static
load-sharing strategies have been proposed for distributed
systems,[1% 14 25. 30321 their potential is limited for DSTA
since they do not adapt to the unpredictable and time-
varying changes in system load. On the other hand,
dynamic schemes are based on the system state, and nodes
(processors) can transfer task(s) to other nodes to make
efficient use of available resources.!: % 1 14.18.20.23. 29 Gince
dynamic schemes need more information, they are inher-
ently more complex and involve additional computational
overhead. Other research on load sharing includes theore-
tical studies,”” ?* 2! developing metrics for task alloca-
tion'> 2 and proposing efficient strategies.® 11162829331
The results of previous studies on finding solutions for
task-allocation problems in distributed systems indicate
that state-dependent (dynamic) load-sharing strategies per-
form better than static strategies, but have higher overhead
and are sensitive to inadequate or inaccurate status infor-
mation. While dynamic strategies are more appropriate for
task allocation in DS, existing schemes tend to assume
knowledge of many parameters that in practice are not
known, and unlike previous studies where strategies are
set up for externally generated tasks (messages), in DS the
rate of message generation depends on the strategy in
effect. Other complicating factors in DS include unknown
precedence relationships, reallocation of LPs rather than

individual messages, and the fact that a balanced load
across processors may not be the proper strategy if the
objective is to minimize run time. For these reasons, there
is room for improvement of dynamic metrics and schemes
for TAPs as applied to DS.

The next section presents a congestion metric that can be
adapted to different computer systems and captures the
essential characteristics of the logical and computer system
used.

3. A Congestion Measure for Task Allocation

We define the message utilization , of processor j as
T =N/, j=1,....d
where

A

arrival rate of new messages (see below) to processor j

1/E(interarrival time)

u, = service rate of messages on processor j

1/E(service time).

A message m, from LP; to LP, (i,k€{l,...,c}) ie,
from P, to Pp (where Py, indicates that LP, is assigned
to Pyp), is a new message to Prp, if either of the following
conditions is satisfied:

1. Pip # Pp, or
2. m,, was generated at LP,, i.e,, LP, is a source LP. In this
case, LP, = LP,.

In Figure 2, a new message to P, is any message from LP;
to LP, (condition 1). For P;, a new message is a message
generated at the source LP, LP; (condition 2).

A new message to P, may visit many LPs on that
processor before leaving it. At each LP the message experi-
ences a delay. Delay occurs because of waiting in queue
until a message’s precedence relationships are satisfied and
the processor is ready to execute it, and because of the
execution time incurred at that LP. The total execution time
incurred by a message m,, on P, is the sum of the execu-
tion times incurred at the various LPs visited by that
message on P,. Then ¢, = 1/p, is the expected execution
time incurred by a new message to P,. In Figure 2, the
expected execution time i, for a new message to P, is
the sum of expected execution times incurred at LP,, LP5,
LP,, and LP,.

The metric leads to the observation that, given A; and
&, the maximum departure rate 3, of messages from P, can
be predicted. It is intuitive that when A, < p, the maxi-
mum departure rate is limited by A,. Similarly, when A, >
By the maximum departure rate is limited by 7 In fact,
we can write

8, < min(A, p)). M
As discussed in the following sections this observation has
ramifications for allocation schemes seeking to minimize

the run time of a simulation.

Copyright © 2001 All Rights Reserved

o7

Congestion for Dynamic Task Allocation

3.1. Characteristics

Two parameters must be evaluated each time dynamic
reallocation is done: the cost of making an allocation, and
the benefit that can be achieved due to the reallocation.

Cost: To carry out a dynamic scheme, time is spent in
collecting statistics, calculating the new allocation, and
in reallocating the load in the system. As dynamic reallo-
cation is done during run time, each instance of load
reallocation increases the simulation’s run time. Thus
the cost in using the dynamic scheme is the time spent in
implementing it.

Benefit: The benefit in using a dynamic scheme is the
potential improvement in run time that can be achieved by
reallocating the load (compared to what would happen if
the load were not reallocated).

To determine the cost effectiveness of a scheme we must
know the benefit and cost of implementing it each time
load is reallocated. While the cost can be estimated accu-
rately, it is much harder to determine the benefit of using a
dynamic scheme. Run time is an intangible objective, as it
is known only at the end of the simulation. An equivalent
but more tangible measure is §;, the departure rate of
messages from the system. As run time is related inversely
to &, an assignment that increases this departure rate will
produce a reduction in run time, if the cost of making the
assignment does not offset the improvement in the depar-
ture rate. While it may not be possible to predict the exact
run time of the simulation, by observing the change in &
due to a reallocation the apparent benefit may be predicted.
Unlike run time, 8, can be measured during the simula-
tion, and by observing the change in it, the relative effects
of an assignment can be estimated.

Some characteristics of the metric and Equation 1 that
are useful in determining the cost effectiveness of a dynamic
allocation scheme are listed below.

e 7, reflects the load on processor j. If 7, > 1 it implies
that P, is receiving messages faster than it can process
them. While this is an unstable condition, it does arise
in distributed-simulation environments and it is impor-
tant to recognize and correct such situations if simula-
tions are to run effectively. One strategy may be to

reduce the load by moving some LPs away from P].

® The metric can be used to determine the benefit of an
allocation. As messages leave the system from processors
containing sink LPs, 8, can be expressed as the sum of
departure rates of messages from processors containing
those sink LPs. For example, in Figure 2, §; = 8,. But §,
can be predicted given A, and u, Thus if A, and u, are
known for two assignments, the better one can be chosen
by determining the relative benefits (i.e., by observing
8,) of the assignments. For example, Figures 2 and 3
show two possible assignments. By determining 6, (P,
contains LP,,, the sink LP) for both assignments, the one
that leads to a lower run time (higher §,) can be found.
Note that to determine the cost effectiveness of a pro-
posed assignment during the simulation, we have to

A I

FAgure 3. An alternative assignment of LPs to processors.
Beginning LPs: 1,3,9. Ending LPs: 2,7, 8, 10.

predict the as-yet-unobserved values of A, and g, under
this new assignment.

e In many task-allocation problems load is allocated so as
to maximize the utilization of the processors. In such
cases , = 1, ¥j. While such conditions are considered
ideal, the particular assignment may not be efficient. An
efficient assignment, when the objective is to minimize
run time, will be conducive to processing messages at
the earliest possible times. That is, the assignment will
seek to reduce the waiting time in queue for messages.
There are two main reasons why messages in DS wait in
queue: to satisfy precedence relationships, and to wait
for service time at the processor. Of the two, the former
is usually more difficult to correct, as the latter can be
adjusted for by decreasing the load on that processor,
thereby increasing the effective service rate. The depar-
ture rate § can be used to detect conditions where
precedence relationships are not being satisfied in a
timely manner. As the departure rate of messages from
a processor is limited by the arrival and services rates at
that processor, under ideal conditions, 5, = min(A, ;L]).
But because of the overhead involved in processing a
message and in collecting statistics to measure 7, and §,
8 = min(A . }.L]) (usually). We are differentiating between
theory and practice. In theory it is possible that 8, =
min(A, u,). But when 8, is calculated from observed
values it is unlikely that the equality will hold. The
goodness of an assignment can then be found by observ-
ing 8, If §, < min(A,, u)) it could suggest that messages
are spending excessive time waiting to be processed
because precedence relationships are not being satisfied
(see Figure 4), a direct result of an inefficient assignment.
Thus, even when 7 =1 (arrival rate = service rate),
the assignment may not be an efficient one. Reallocation
schemes need to account for such situations if simulations
are to run efficiently.

3.2. An Alternative Representation for X ; and
An important use of the metric is in adaptive schemes for
load reallocation. To facilitate its use in such schemes, we

Copyright © 2001 All Rights Reserved

Shanker, Kelton and Padman

Messages waiting
for execution

Messages waiting
for precedence
relationships to,
be satisfied

(15,185, LPy,m;)
(19,LP;,LPy,mg)
3 (21,LPg, LPy,myo) 4

(25.LPy,LPy,my3)

(30,Lp;, Ly, ms)
Figure 4. Messages waiting for precedence relationships to
be satisfied at LP,,.

present an alternative, but equivalent, form for calculating
A, and gy In this new representation, A, and pu, are
expressed as a function of “load” on LPs instead of load on
processors.

For a fixed assignment, let LP, on P, be a beginning LP if

1. LP, - P, (meaning that LP, is assigned to P)
2. LP, receives messages from LP;, and LP, = P, I # j, or
3. LP, is a source LP.

In Figure 2, LP, is a beginning LP on P,, while LP; is a
beginning LP on P;. Note that a beginning LP is a recipient
of new messages.

Also, let LP, be an ending LP on P] if

1. LP, - P,
2. LP, sends messages to LP;, and LP, = P, [# j, or
3. LP, is a sink LP.

Thus, LP; is an ending LP on P,, and LPg is an ending LP
on P;. LP; is both a beginning and an ending LP.
By definition, beginning and ending LPs depend on the
assignment in effect.

Then A, can be expressed as the sum of arrival rates of
new messages to beginning LPs on P,. In Figure 2, A, is the
arrival rate of messages to LP, from LP,, and A, is the sum
of arrival rates of messages to LP; from LP, and from LP.
In general, let «,,, be the arrival rate of messages to LP,
from LP,,. Also, if LP, is a source LP let k,,, be the rate at
which messages are generated from it. Then,

/\}= Z Z Kmn+ Z Knn (2)

LP, =P, LP, > P, LP, - P,

(x,, will be 0 if LP, is not a source LP). Thus, the arrival
rate to a processor can be characterized as a function of
arrival rates to beginning LPs.

As ¢, is the expected execution time for a message on P,
it can be calculated by knowing the expected execution
time for a message on each LP in P, and the probability of

choosing one of many paths (if more than one exists) in P,
(because the path determines the number of LPs a message
will visit, and hence the execution time for that message).
Once a path has been chosen the execution time for a
message is the sum of the execution times incurred at the
LPs on that path.

In Figure 3, two paths exist within P,. Path 1 consists of
LP,, LP,, LP;, LF,, and LP,, and path 2 has LP; and LP.
The expected execution time for a message on path 1 is
L7_; v, and on path 2 is v5 + vy, where v, is the expected
execution time for a message on LP,. The expected execu-
tion time for a new message to P, can then be written
as [prob(path 1) X expected execution time on path 1 +
prob(path 2) X expected execution time on path 2]. For our
example, ¢, = 0.5 X L7_, v, + 0.5(v; + vg). In general, if
there are |, paths in P, and if «; is the probability of a
message taking path i in P, (Zi_; «, = 1,¥}), and

1
Bkr = {0

!

P = o,) By 3)
1k

H

if LP, € path i
otherwise

then

The processor and path to which o, and B,, refer should be
clear from context.

As an example, consider evaluating §; for the assign-
ment in Figure 2. Let the expected execution time for a
message on the various LPs be », =1 for k=1,2,3,7,8,
9,10, and v, =2 for k=4,56. As the processors are
identical the execution times are independent of the
assignment. From Equation 3

l/l"] = EazZBkzvk'
i k

In Figure 2 each processor has only one path within it that
a message can take. Therefore, a; = 1,Vj. Thus, in each
processor B, = 1, i.e., a new message to P, will be executed
on all LPs in P,. The values of u,Vj, can therefore be

calculated. For e>l<ample, in P, the path is LP,;, LP,, and LP;.
Also, from the values of the v’s and Figure 2, 1/u, =1 +
1+1=23. Similarly, 1/u, =2 +2+2+1=7, and
1/p5 = 1. P, receives messages from P, and P,, but since
each message to P, takes the same path (i.e., LPy and LP,y),
1/py=1+1=2

To calculate A, we note from Figure 2 that LP;, LP,, LPs,
and LP, are beginning LPs on P;, P,, P;, and P,, respec-
tively. From Equation 2 and Figure 2, A, is the rate of
generation of messages at LP;. If P, uses the algorithm in
Table I to generate new messages, A, = u,. Therefore, A, =
1/3. Assuming for simplicity that the assignment in Figure
2 is “good” (refer to Section 3.1), ie., 8; = min(A;, uy),
8, = A, = 1/3. Therefore, A, = A, =1/2X1/3 =1/6,
assuming negligible communication times. Since p, = 1/7,
my =7/6, and thus 8, = min(A,, p,) = 1/7. Similarly A,
#,, and §,Vj, can be calculated. Table IT and Figure 5 show
the calculated values. For this assignment LP,, is the sink
LP, so 8, = &, = 13/42.

Copyright © 2001 All Rights Reserved

Congestion for Dynamic Task Allocation

4. Predicting 8,
As mentioned earlier, each time load is dynamically reallo-
cated it is important to determine the cost effectiveness of
the reallocation. While cost can be measured accurately, it
is much harder to gauge the benefit. This section describes
how the departure rate 8, of messages for a current assign-
ment M and a proposed assignment M' can be predicted
during the simulation. The change in §, (between the
current and the proposed assignment) can then be used to
determine the benefit.

Let A! and ! denote the arrival and service rates of
messages, respectively, if M is implemented. We consider

TableI. Algorithm to Generate New Messages

if messages are waiting then
process message

else
generate another message
endif
Table II. Departure Rate of Messages under M
i kv ¥ KA 5)
111 1+1+1=3 1/3 1/3 1/3 1
2 1
3 1
2 4 2 2+42+42+1=71/7 1/6 1/7 7/6
5 2
6 2
7 1
3 8 1 1 1 16 1/6 1/6
4 9 1 1+1=2 1/2 13/42 13/42 13/21
10 1
8 =8, = 13/42.

two cases: When the actual future values of A! and u! can
be determined at a point in time during the simulation, i.e.,
when future values of parameters are known, and when A!
and u! have to be estimated from observations collected
under the current allocation M, i.e., future values have to
be estimated from past data.

4.1. Known Parameters

Consider simulation of the logical system shown earlier
(Figure 1). Let the current assignment be (M: LP,;,LP,,
LP, > P; LP, LP; LP,,LP, > P,; LP; - P,; LP,,LP,, —
P,) (Figure 2). For illustration purposes let the possibly new
assignment be (M': LP,,LP,,LP, - P;; LP,, LP;, LF, — Py;
LPg — P3; LP,, LDy, LP), — P,) (Figure 6). Then a probable
set of values for A' and u' is shown in Figure 7. While
these values were calculated using the approach shown in
Section 3.2 and assuming that the same execution times
were valid under M}, it is assumed that these are indeed
the actual values of A' and u! under M'. As LP,, is the
sink LP, 8, = 8] = 1/3, where 8] is the departure rate of
messages from the system under M'. It has again been
implicitly assumed that 8' = min(A], u}), which may not
be true. In any case, 8] has increased by 1/42 over the
current assignment M (compare with &, in Figure 5). The
cost effectiveness of the new assignment can then be deter-
mined by knowing the cost of implementation.

In most cases it would be impossible to determine A
and p' beforehand. This is because of the changing condi-
tions of a distributed simulation and the difficulty in deter-
mining a priori the effect of an assignment on factors like
precedence relationships and the path of a message. But if
the future values of parameters are known the cost effec-
tiveness of a scheme can be readily established.

4.2. Estimated Parameters

In presenting an estimate of the parameters, we will use the
following convention: a superscript “1”” will denote a value
under M! (Figure 6). Thus, u) would be the service rate of

m, =13/21

Fgure 6. Departure rate of messages under M.

Copyright © 2001 All Rights Reserved

Shanker, Kelton and Padman

P, under M'. When values are estimated from past data we

w111 represent the estlmator with a , so p; would be the
estimated value of ;L]

We assume in determining A and /.L that the simulation
at any point will behave like its recent past. This means
that observations collected under the current allocation
represent the future, i.e., arrival rate of messages between
LPs and the service rate of messages at LPs will remain
unaffected by a different assignment. While this assump-
tion could be violated in many instances, we feel that A'
and u' can still be estimated satisfactorily for purposes of
choosing an alternative assignment. Also, as shown later,
proportionality constants can be included to account for
factors such as heterogeneous processors and varying
communication rates.

As an example, consider determining /\}, Vj, for the
assignment M! of the previous section (Figure 6). The
current assignment M is shown in Figure 2. Assume that

the data collected under M until time ¢ is as given in
Tables III and IV. Table III contains the cumulative time
between arrival (CTBA) of messages to LPs under M. Thus,
if TBA,,,, is the time between arrival of the mth and
(m — 1)st message to LP, from LP, then CTBA,

TN _, TBA, ;m, Where N is the number of messages that
arrived at LP, from LP, (empty sums are taken to be zero).
Also, the cumulative execution time for a message at an LP
(CET) and the number of messages executed at each LP are

given in Table IV. From these data, consider calculating A}.
In M' (Figure 6) LP, is a beginning LP on P,, and now
messages to I:fg from LP, no longer constitute new mes-
sages. To get A} we need the arrival rate of messages to LP,
(beginning LP) and to LP, from LP;. As the recently
observed values are representative of the future, we can
use the arrival rate of messages to LP; and to LP, from LPg

from the current allocation (Table III) to estimate A}. For
example, Aj=1/6.82 + 1/6 = 1/3.19. Similarly, A} is the
arrival rate of messages to LPg and can be estimated as
)\3— 1/6. Table V lists the calculated values of)\1 Vj. The
values of /\1 are also listed for comparison (from the previ-

ous secnon), In this case,)\4 estimates)\1 to within 6%
[100(1/3 — 1/3.19)/(1/3)], if the values of A} are indeed
correct.

To determine w; we need v}, the expected execution
time at LP, € P, and the probability of choosing each path
in P, under M. For example, compare Figures 2 and 3. For
the same logical system the path of a message in P, is
different under the two assignments. In most simulations
not only are the different paths difficult to determine, but
also the probability of choosing a particular path is seldom
known. This is because the path of a message is constantly
updated as it proceeds from one LP to another, and this
path changes when the assignment changes. Thus, in most
cases it is not possible to determine the different paths, let
alone the probability of choosing a particular path, for an

Uy =125

19 P10}
=253

P4

Fgure 7. Departure rate of messages under M.

o006

T .Y

n

uupyllglltucuu

4 A
I

PR -
ITTRIYNSReserved

61

Congestion for Dynamic Task Allocation

Table III. Average Arrival Rate of Messages to LPs

Table V. Estimated Arrival Rate of Messages under M*

Origin Destination # Arrivals Arrival rate =
LP LP CTBA (N —1) # Arrivals/CTBA
— 1 750 250 1/3

1 2 750 250 1/3

2 3 750 250 1/3

3 4 750 125 1/6

3 8 750 125 1/6

4 5 750 110 1/6.82

5 6 750 110 1/6.82

6 7 750 110 1/6.82

7 9 750 110 1/6.82

8 9 750 125 1/6

9 10 750 235 1/3.19
10 — 750 235 1/3.19

CTBA = Cumulative time between arrival of messages.

Table IV. Execution Time Observed at Each

LP Under M

v = v} =

Processor LP, CET, n, n,/CET,
1 1 250 250 1
2 250 250 1
3 250 250 1
2 4 220 110 2
5 220 110 2
6 220 110 2
7 110 110 1
3 8 125 125 1
4 9 235 235 1
10 235 235 1

CET, = Cumulative observed execution time incurred at LD,.
n, = Number of messages executed at LP,. v, = Average execu-

tion time for a message at LP;. »} = Predicted average execution
time at LP, under M.

assignment that has not yet been implemented. As ,u} is to
be estimated from past data the following approach is
taken:

Using Equation 3 we can write

1/ = Yol Y Bivi
1 k
= Yl aBy,
k 1
- Tola},
k
where

@y, = The probability that a message is executed at LP, € P,

under M!

Arrival Rate to

Processor Beginning LP Beginning LP A A
1 LP, 1/3 13 1/3
2 LP, 1/6 1/6 1/6
3 LP, 1/6 1/6 1/6
4 LP, 1/6.82
LP, 1/6 1/319 1/3

if LP, € path i
otherwise

1 _ 1
ki 0

a; = Probability of a message choosing path i

1
1
vi = Expected execution time for a message on LP,.

Note that 8}, and «! are defined relative to M'. Therefore
u; can be determined by knowing v, the expected execu-
tion time for a message at LP, under M!, and CD}(], the
probability of a message being executed at LP,. Since
vy and @, are unknown we proceed as follows:

Under the assumption that recent data are representative

of the future, v} is estimated by v, = v, the average of the
observed times for a message at LP, under M. For our

example v; can be calculated as shown in Table IV. To
estimate @}, we note that

1
@,

Probability of a message being executed at LP,

Number of messages that will be executed
at LP, under M!

T -
" Number of new messages to P, under M!
Number that will be executed at LP, under M!
Number of messages to beginning LPs
in P, under M'

Number that were executed at LP, under M

(Number of messages to LPs under M
that are now beginning LPs in P, under M)

nk/m}

I

where

n; = Number of messages that were executed at LP,
under M
NM]1 = Predicted number of new messages to P, under M'

(calculated from data observed under M).
Thus,

1/p) = Yvidy,
k

where
vi= Average execution time observed for a message at
LP, under M

Copyright © 2001 All Rights Reserved

Shanker, Kelton and Padman

®;,= The estimated probability of a message being exe-
cuted at LP,.

To calculate @} , we need W} and n,. Since n, is the
number of messages executed at LP, under M, it is known.
NM,' is the number of new messages to P; under the
proposed assignment M'. Since new messages to P, are
messages to beginning LPs in P, NM}1 can be determmecl
by observing the beginning LPs in P, under M! and the
number of messages that arrive to such LPs. Because future
values are not known, NM]1 is estimated by knowing the
number of messages that arrived to the above-mentioned
LPs (beginning LPs) in the current allocation M (Table III).
For example, consider determining NM The beginning LP
in P, under M! is LP, (Figure 6). An estimate of the number
of new messages to P; is therefore the number of messages
generated at LP, under M. From Table III this is equal to

250. Similarly, KI-IVI; is the number of messages that arrived
to LP, (a beginning LP in P, under M') from LP; under M.

From Table III, NAM% = 125. Once W} is known, <I>,1(] can
be calculated. Table VI shows the results.

Tables VII and VIII show algorithms that can be used to
estimate A' and p! from data collected under the present
assignment.

4.3. Limitations

Al and p! are estimated based on the assumption that past
data represent the future even when a reallocation is done.
The purpose in estimating is to determine the benefit of a
proposed assignment during the simulation. While this
benefit may not be accurately determined when the
assumption (that past data represent the future) is violated,
the estimated values may still be used to determine a better
assignment, i.e., to choose between the current allocation
and a proposed assignment. It is obvious that the greater
the departure from this assumption, the less accurate our
estimate is likely to be. Since observed values are usually
dependent on the assignment, it is possible that the
assumption could be violated. In such cases an error

Table VI. Estimated Service Rate of Messages under M'
7L -
pe—} P -_— —
P, LP, NM;, n, m/NM, v} pl pt
1 *1 250 250 1 1 1/3 1/3
2 250 1 1
3 250 1 1
2 *4 125 110 0.88 2 1,528 1/6
5 110 0.88 2
6 110 0.88 2
3 *8 125 125 1 1 1 1
4 *7 235 110 0.468 1 172468 1/25
*9 235 1 1
10 235 1 1

*Indicates a beginning LP.

Table VII. Algorithm for Estimating A' from

Observed Data

subroutine calculate_arrival _rate (p)
/*Determines the arrival rate of new messages to P,
under M!*/

/*arrival_rate(LP,, LP,) = observed arrival rate of
messages from LP, to LP, under M*/

For each beginning LP LP, € P, DO
For each predecessor LP; of LP, DO
If[(Pyp, # P,)or (LP, = LP)] then
/\}, = A}, + arrival _rate(LP,,LP))
endif
end_DO
end_DO
end_routine

Table VIIL. Algorithm for Estimating p' from

Observed Data

subroutine update_messages_to_processor (p)
/*Determines the number of new messages coming to
P, under the proposed assignment M! based on the
data observed under M* /
/*jobs(LP,, LP) = Number of messages that
arrived to LP, from LP, under M*/
NMpy =0
ForeachLP, € P, DO
For each predecessor LP; of LP, DO
If [(PLP # P,)or (LPk = LP)] then
NMp = NMp + jobs(LP,, LP)
endif
end_DO
end_DO
end_routine

subroutine calculate_execution_time (p)

/*Determines ., *
/*n, = Number of messages executed at

LP, under M*/
% =0
Foreach LP, € P DO
q>3p = ,/NMp
’l — l
¥, —l/lp +¢’1PXVl
end_DO

end_routine

is introduced in the estimation, and usually a greater
degree of error is introduced in estimating A] than in u.
For our example, A} underestimates A} by 6% [100(1/3 —
1/3.19)/ (1/3)], while u} overestimates w; by 1.3%
[100(1 /2.5 — 1/2.468) /(1 /2.5)]. Generally, the service time

Copyright © 2001 All Rights Reserved

Congestion for Dynamic Task Allocation

for a message on an LP depends only on the processor to
which the LP has been assigned, and not on the precedence
relationship among LPs. When considering a new alloca-
tion the observed execution time can be adjusted to account
for the difference in processor performance, and therefore it
is possible to estimate p' accurately.

On the other hand, estimation of A! is dependent on both
the assignment and the precedence relationships among
LPs. As the strength of the relationship, i.e., the frequency
and length of the messages, is also dependent on the
assignment, an error is introduced in estimating Al. Also,
in most cases, a correction factor cannot be determined
since it is difficult to determine the strength of precedence
relationships a priori.

Since the point in doing dynamic task allocation is to
improve the run time of the simulation, each time a reallo-
cation is considered the potential improvement in run time
because of the new, but as-yet-unimplemented, assignment
should be known to determine the cost effectiveness of the
proposed allocation. The potential improvement is mea-
sured by the change in §,. While §; can be predicted by

knowing A! and p!, an assumption is made that past data
represent the future. Under this assumption, the effect of
precedence relationships is captured in past data and hence
it is possible to predict 8,. It is much harder to predict 8,
when this assumption is violated. In the Chandy/Misra
model, precedence relationships at LPs with multiple arrival
streams (precedence relationships for messages are always
satisfied at LPs with a single input stream) can be modelled
as a superposition process with a queue discipline that is
dictated by the timestamp of the messages in the various
input queues. This is because an LP will not process a
message until it is sure that the timestamp of the message
is the least among all messages that the LP will receive.
The problem is in predicting the throughput for such
systems. While approximations exist for systems with gen-
eral arrival streams with a general service distribution (i.e.,
L GI/G/1 systems), and a prespecified queue discipline
like FIFO,"" 347361 to our knowledge no results yet exist

Aq=1/6

for systems with queue discipline as defined by precedence
relationships like those in DS. Thus while it is easy to
recognize when precedence relationships are not being sat-
isfied (by observing 8)), it may be difficult to correct them,
especially when the assumption on past data is violated.

5. Extensions
Thus far we have assumed that the communication time
between processors is negligible and that the processors are
identical. This section describes ways to relax these
assumptions.

B6.1. Pesitive Communication Times
Consider a computer system with 2 processors P, and P,
and a single communication channel ,, from P, to P,
similar to a single-server system with one input queue,
with the channel itself being the server. The service (com-
munication) time for a message depends on the type of
message and the service rate of {},,. An arriving message
finding €),, busy waits in queue until it can be serviced.
Clearly, if /\Q is the arrival rate of messages to (1, , and
ta, is the communication rate, then the departure rate 89
of messages from), cannot exceed min(2q, ey) Thus,
the congestion metrlc 7 can be applied to “each’channel
between two processors in the same manner as it was
applied to processors themselves. One difference is that
messages coming into the communication channel have
satisfied their precedence relationships (as far as the channel
is concerned), so it is quite likely that 8g, = min{\g By).

As an example, consider the logical system shown earlier
in Figure 2, with the communication rate between all pro-
cessors being 0.1. The effect of this on 8, is shown in Figure
8. Thus, while determining a new assignment the effect of
communication can be taken into account.

In many instances the communication rate will not be
known, so it could be estimated assuming that we can
collect observations between any two processors for each
message type. Then the observed communication rates for

8o =1/10

ln =l/6
[kq =710]
g =1/10

y A, =1/10
=1
p Ag =110

Hao =

10

8o =1/10
YA=110

figure 8. Effect of non-negligible communication time on §;.

Copyright © 2001 All Rights Reserved

Shanker, Kelton and Padman

each message type can be used in the calculation for a
proposed allocation to determine the effect on §;.

5.2. Heterogeneous Processors

When the metric is used for estimating the effect of a
proposed allocation an assumption is made that recently
observed values represent the future. When heterogeneous
processors are used this assumption is violated. Now the
observed average service time for a message on an LP is
valid only for its current processor assignment. To a certain
extent, this problem can be alleviated if we knew the
relevant performance characteristic of the processors in
the system. Let 7, represent the characteristic of interest for
P. For example, let 7, be the “speed” (in mllhons of
mstructlon per second) of P,. Then, when estimating u! for
a proposed allocation the observed execution times (under
M) can be multiplied by the appropriate 7,'s to account for
the difference in processor performance. For example, if
LP, in Figure 2 is moved to P,, the expected execution time
for a message on that LP (assuming that everything else
remained unchanged) would change to v,7,/7,. In many
instances it is easy to determine the relative speeds of the
processors, and this can be taken into account while making
a reallocation.

8. Implementation

An experimental study was conducted to evaluate the
effectiveness of using the congestion metric in a dynamic
scheme on tasks such as those found in distributed simula-
tion. The measure of performance was the observed run
time of the simulation. Three logical systems (Figures 9, 10,
and 11) based on systems used in previous studies and
suitable for simulating on the iPSC/2 Hypercube were
considered.?® %’} The following factors were included in the
experimental design:

A The scheme used. The performance of the dynamic
schemel®® ?71 was compared to a static strategy that was
chosen to achieve the best possible run time for the
simulation under the assumption that the initial load
remained unchanged for the duration of the simulation.

B The increase in load. This factor controlled the change in
processing time for a message at an LP, and was consid-

Agure 8. Logical system 1. Source LP: 1.

Figure 10. Logical system 2. Source LP: 1.

Agurs 11.

Logical system 3. Source LP: 1.

ered at two levels. The processing time for a message at
all LPs was the same initially.

C The time of load increase. This factor specified the num-
ber of messages that were executed before an increase in
processing was required at an LP. This was considered
at two levels.

D The location of load increase. While factors B and C
specify the amount and time of load increase, this factor
indicates the location of load increase. Specifically, the
LP experiencing the load increase is defined here. This
also was considered at two levels.

In addition, it was felt that the run length (i.e., the number
of messages simulated) of the simulation, and the fre-
quency of dynamic reallocations would affect the run time
of the simulation. Technological constraints on the buffer
space of the hypercube limited the maximum simulation
run length to between 900 to 5000 messages depending on
the logical system being simulated. A greater run length
resulted in an error while running the simulations, espe-
cially when dynamic reallocation was not done.

Two different sets of experiments were conducted. The
experiments differed in how the hypercube was used for
dynamic reallocation. In the first set of experiments all
calculations pertaining to the scheme were done on the
nodes. Here the host computer was used only for starting
and closing the cube, i.e., to provide the user with feedback
about the simulation. In the second set of experiments
calculations for determining a new allocation were done
on the host while the nodes continued simulating. This
favors the dynamic scheme as the overhead associated with
calculating the reallocation is no longer present. It is impor-
tant to note that in both experiments there is still the
overhead of actually implementing the reallocation, i.e., of
moving LPs from one processor to another. In all cases a 24
full factorial design was used with the four factors men-
tioned previously, and all data generated were made inde-
pendent by using nonoverlapping random-number streams.
Each experiment was replicated until statistically signifi-
cant results were obtained at the 90% confidence level.
Further details of the implementation can be found in
[26, 27].

7. Results
This section discusses the results of the experiments
described in the previous section. The results of the experi-

copyrght © 20071 All Rights Keserved

Congestion for Dynamic Task Allocation

ments, shown as a comparison between the dynamic and
static scheme, are in Figures 12 through 14 and are described
below. Note that each point in the above figures is the
result of a pair of design points, and can be viewed as
comparing the levels of A (scheme; see Section 6) with all
other factor levels fixed. For example, the design point pair
(1,2) would represent a comparison between the dynamic
and static scheme when factors B, C, and D are fixed at
their low levels. Only the results from the first experiment
are described since the results of the second experiment are
qualitatively similar.

7.1. Bxperiment 1: Reallocation Using Only the Nodes

The run time achieved by using the adaptive scheme was
in most cases substantially better than when running the
simulation without the scheme. Figure 12 shows the percent
change (100 X [d — s]/s, where d and s are the aver-
age run time observed when using the adaptive and
static schemes, respectively) in run time by using the
dynamic scheme. For logical system 3 (LS,), the run time
improved by 30% to 50% by using the adaptive scheme,
while for logical system 2 (LS,) the improvement was
between 20% to 44%. While the improvement for logi-
cal system 1 (LS;) was not as great (Figure 12), it was
nevertheless significant.

But in a few cases, for LS,, the adaptive scheme in fact
increased the run time (Figure 12). There were two main
reasons for this increase: the topology of the logical system
simulated, and the strategy used for task allocation. The
adaptive scheme?”! attempts to improve the run time by
taking a localized view of the problem. That is, tasks from
processor P, are reallocated to P, if that reallocation will
increase the net departure rate of messages from the above
two processors, without considering the effect on the over-
all system. This strategy fails when there is a high degree
of dependency among LPs (even if precedence relation-
ships are satisfied immediately), as it is in LS; where the
logical system is a pipeline model. Here, any change in
processing at LP, has an immediate and significant effect
on LPs downstream, and observations collected in the recent
past may not accurately reflect future values under a differ-

—>¢— Logical System 1
—&— Logical System 2
—©6— Logical System 3

Percent Change
o
S
1

230 -
40 -
-50 T T T T ¥ T T T
(1,2) 34 5.6 7.8 (910 (11,12) (13,14) (15,16)
Design Point

Figure 12. TPercent change in run time.

ent assignment. Thus a new assignment based on 6/1 may
lead to an inefficient reallocation.

Figure 13 shows the average threshold values for the
three logical systems. If w,‘k is the threshold value for P,
at the end of run i for design point k, then the average
threshold value 7* = L92) 7" /d, where 7 = L[7% /N,
and N, is the number of replications at design point k.
Unlike utilization, 71-]”‘ is calculated for only as long as
messages are arriving or being processed, and any idle
time at the end of the simulation for a processor (when
other processors are still working) is not taken into account.
Thus, 7, represents the utilization as long as messages are
being processed. For LS, and LS; (Figure 13) the average
threshold tends to be higher for the dynamic scheme,
but for LS,, not only did the adaptive scheme have a lower
average threshold, but the balance of load among pro-
cessors, i.e., the variance in threshold values among proces-
sors, is lower while using the dynamic scheme (Figure 14).
This suggests that the dynamic scheme lowers the run time
by using the processors more efficiently and is therefore
able to absorb a greater degree of load change in the
system. In general, for all logical systems the adaptive
scheme achieved a better balance of load among the proces-
sors, leading to a lower run time when compared to the
static strategy (Figure 14).

7.2. Eiect of System Characteristics on Run Time

The above experiments show that the adaptive scheme was
effective in reducing the run time of the simulation com-
pared to using only the static scheme, and generally
the scheme with a lower deviation in load among proces-
sors lead to the lower run time. This supports earlier
studies where the variance of the load distribution among
processors has been used as a measure to minimize the run
time of the simulation.?”) At face value, this implies that
irrespective of the problem and the computer system it is

08 1 L I L L 1 L 1
, &

0.7 ’ —>¢— Logical System 1 (Dynamic)}
2 ¥ ox - X=X - =X - Logical System 1 (Static)
G —@— Logical System 2 (Dynamic)
é B - -@ - Logical System 2 (Stauc)
% —©— Logical System 3 (Dynamic)
5 - -G - Logical System 3 (Stauc)
z . ¥ 3 . .®

0.6 -

0.5 T T T T T T T T

1,2) (34 66 (7.8 (9100 (11,12) (13,14) (15,16)
Design Point

Figure 18. Average thresholds.

Copyright © 2001 All Rights Reserved

Shanker, Kelton and Padman

better to distribute the load uniformly across the available
processors. Intuitively this would not be correct. The num-
ber of processors used should depend on the logical as well
as the computer system. The following experiment uses
Equation 1 to provide us with an intuitive way of assigning
load to minimize the run time of the simulation.

LS, was considered for simulation. The average exe-
cution time for a message on all LPs was the same
and = 0.325ms. The communication time between proces-
sors was estimated to be = 3ms. Five different static
assignments were considered for simulation (Table IX). In
each assignment, except one, 2-UB, the LPs were uniformly
distributed over the available processors. In 2-UB (2 proces-
sors, unbalanced load), the LPs are allocated so that the
bottleneck (the most utilized resource) occurs at the proces-
sors and not in the communication channels, while in 2-B (2
processors, balanced load), and 4 and 8 too, the bottleneck
is in the communication channels, a result of uniformly
distributing the load. Specifically, in 2-UB, LPs are allo-
cated to P, until 8, = 1/, where { is the expected com-
munication time between two processors. The remaining
LPs are then assigned to P,. The primary interest was
to determine the relative performance of the above
allocations.

0.15 1 L ! I} 1 1 1 L
—>— Logical System 1 (Dynamic)
T - =X - Logical System 1 (Static)
= —@— Logical System 2 (Dynarmic)[~
. - -® - Logical System 2 (Stauc) |
—=6— Logical System 3 (Dynamic) |
§ - -G - Logical System 3 (Static)
0.10 -
.g 8 -
£ | |
£] I
0.05 < r
0.00 T T T T T T T T
(1,2) (34 66 78 G100 (11,12) (13,14) (15,16)
Design Point
Agurs 14. Average deviations in load.
Table IX. Approximate Values for &,
Assignment Available Processors 8,
1 P, 0.1923
2-B P,, P, 0.3846
2-UB Py, P, 0.3419
4 Py— P, 0.7692
8 P, - P, 1.5385
1/¢ = 0.3333.

In the first set of experiments the simulation was run for
800 messages. The results are given in Figure 15. Clearly
2-UB is the best allocation. Consider the simulation under
assignment 2-B. Here P, sends messages to the communica-
tion channel at a faster rate than it can handle, and hence
after a period of time the I/0 buffer gets full. When this
happens, P, stops its processing and waits for the buffer to
clear before continuing, thus wasting time. This situation
arises when using 4 and 8 processors also because §, > 1/{.
But in 2-UB, P, executes messages at a rate comparable to
the communication rate between processors, and under
such circumstances no time is lost because of a full buffer.
Note that because of the logical structure and mappings
considered the bottleneck will either be at Py or in the
communication channel from P, to P;, and hence the results
can be explained with reference to 8, and {.

The implications of choosing the appropriate number of
processors for a system with limited I/0O space can be
demonstrated even more graphically by increasing the sim-
ulation’s run length to 2000 messages, and hence increasing
the chance of filling up the 1/0 buffer. Now there is a
sharp decrease in the departure rate of messages for assign-
ments 2-B, 4, and 8, while the results for 2-UB and 1 are
comparable to the previous experiment (see Figure 15).
Therefore, when communication time is important a bal-
anced load may not always lead to the best run time, and
even if the load is balanced it is essential that a proper
subset of processors be chosen for the assignment.
One intuitive way of assigning LPs is to balance the
departure rate of messages from the processor to the com-
munication rate so that the impact of limited 1/0 space is
neutralized. The dynamic scheme tries to do just this. In
the earlier experiments, in Section 7.1, a balanced load
generally leads to a lower run time because the simulations
were coarse grained, and hence communication was not the
bottleneck.

8. Conclusions

While task-allocation problems in distributed systems have
been studied extensively, as mentioned earlier, most prob-
lems make assumptions that limit their utility to dis-
tributed simulation. Thus, solutions developed in other
fields are usually unsuitable (in terms of reducing the run
time) for task allocation in distributed simulation. Also,

1 L 1 1 il
—=— 800 Messages

—(— 2000 Messages [

g
‘é 0.20 - L
& 010 -

0.00 T T T T T

1 2B 2-UB 4 8
Assignment

Fgure 15. Average departure rate of messages from the
system.

Copyright © 2001 All Rights Reserved

87

Congestion for Dynamic Task Allocation

little empirical or theoretical work has been done in the
area of dynamic task allocation in distributed simulation,
modelers’ generally relying on “guess work” to determine
a good allocation, and that too a static one.

This paper has provided an intuitive and simple way of
measuring the load during the simulation to minimize its
run time. By studying the values of the congestion metric,
it is possible to determine the effect of an allocation on the
run time, thus giving a direct means of determining
the benefit of a hypothetical assignment. This assures that,
at least theoretically, it is possible to reallocate LPs during
the simulation “optimally”” (to reduce run time). From a
practical standpoint, to use the property of determining the
benefit, we need to assume that observations collected in
the recent past represent the future. While this appears to
be overly restrictive, the predictions (for determining the
benefit) can be made robust to moderate departures from
the above assumption. Thus, unless there is a strong depen-
dency among LPs, thereby possibly severely violating the
assumption, the congestion metric can be successfully used
in providing a good estimate of the run time for a
hypothetical assignment.

Acimowiedgments

We would like to thank Tom Hoffmann, Chris Nachtsheim, and
Sartaj Sahni for their valuable contributions to this work. Compu-
tational support was also received from several sources: Intel
Scientific Computers (in particular, Randy Hufford and David
Billstrom), University of Minnesota Academic Computing Services
{especially Michael Frisch), the Minnesota Supercomputer Insti-
tute, and Argonne National Laboratory. We would also like to
thank two anonymous referees for their comments that lead
to important improvements of an earlier version of the paper.

References

1. S.L. ALBIN, 1982. On Poisson Approximations for Superposition
Arrival Processes in Queues, Management Science 28:2, 126-137.

2. S.L. ALBIN, 1984. Approximating a Point Process by a Renewal
Process, II: Superposition Arrival Processes to Queues, Opera-
twons Research 32:5, 1133-1162.

3. E. ANDERT, 1987. A Simulation of Dynamic Task Allocation in a
Distributed Computer System in Proceedings of the 1987 Winter
Simulation Conference, pp. 768-776.

4. K.M. BAUMGARTNER AND B.W. WaH, 1989. GAMMON: A Load
Balancing Strategy for Local Computer Systems with Multiac-
cess Networks, IEEE Transactions on Computers 38:8, 1098-1109.

5. S.H. BokHARI, 1979. Dual Processor Scheduling with Dynamic
Reassignment, IEEE Transactions on Software Engineering SE-5:4,
341-349.

6. KM. CHANDY AND J. Misra, 1979. Distributed Simulation: A
Case Study in Design and Verification of Distributed Pro-
grams, IEEE Transactions on Software Engineering SE-5:5,
440-452.

7. KM. CHANDY AND]J. Misra, 1981. Asynchronous Distributed
Simulation via a Sequence of Parallel Computations, Communi-
cations of the ACM 24, 198-206.

8. T.C.K. CHOU AND J.A. ABRAHAM, 1982. Load Balancing in Dis-
tributed Systems, IEEE Transactions on Software Engineering
SE-8:4, 401-412.

9. Y.-C. CHow AND W.H. KOHLER, 1979. Models for Dynamic

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

Load Balancing in a Heterogeneous Multiple Processor System,
IEEE Transactions on Computers C-28:5, 354-361.

W.W. CHU anD M.-T. LaN, 1987. Task Allocation and Prece-
dence Relations for Distributed Real-Time Systems, IEEE
Transactions on Computers C-36:6, 667-679.

D.L. EAGER, E.D. LAZOWSKA AND]. ZAHORJAN, 1986. Adaptive
Load Sharing in Homogeneous Distributed Systems, IEEE
Transactions on Software Engineering SE-12:5, 662—675.

D. FERRARI AND S. ZHOU, 1986. A Load Index for Dynamic Load
Balancing in Proceedings of the Fall Joint Computer Conference,
pp. 684-690.

M.R. GAREY AND D.S. JOHNSON, 1979. Computers and Intractabil-
ity, W.H. Freeman, San Francisco.

AM. 1gBAL, J.H. SALTZ AND S.H. BOKHARI, 1986. A Comparative
Analysis of Static and Dynamic Load Balancing Strategies in
Proceedings of the International Conference on Parallel Processing,
pp- 1040-1047.

D. JErrERSON AND H. Sowizral, 1985. Fast Concurrent Simula-
tion Using the Time Warp Mechanism in Proceedings of the
Conference on Distributed Simulation, pp. 63-69.

A. KrATZER AND D. HAMMERSTROM, 1980. A Study of Load
Levelling in Proceedings Distributed Computing, COMPCON, pp.
647-654.

S. LEE AND J.K. AGGARWAL, 1987. A Mapping Strategy for
Parallel Processing, IEEE Transactions on Computers (C-36:4,
433-442.

M. LivNY AND M. MELMAN, 1982. Load Balancing in Homoge-
neous Broadcast Distributed Systems in Proceedings ACM Com-
puter Network Performance Symposwum, pp. 47-55.

V.M. Lo, 1988. Heuristic Algorithms for Task Allocation in
Distributed Systems, IEEE Transactions on Computers 37:11,
1384-1397.

H. Lu anD M.J. CAREY, 1986. Load-Balanced Task Allocation in
Locally Distributed Computer Systems in Proceedings of the
International Conference on Parallel Processing, pp. 1037-1039.

P. MARKENSCOFF AND W. Liaw, 1986. Task Allocation Problems
in Distributed Computer Systems in Proceedings of the Interna-
tional Conference on Parallel Processing, pp. 953-960.

J. MisRa, 1986. Distributed Discrete-Event Simulation, Comput-
ing Surveys 18:1, 39-65.

L.M. NI anD K. ABANI, 1981. Nonpreemptive Load Balancing in
a Class of Local Area Networks in Proceedings Computer Net-
working Symposium, pp. 113-118.

L.M. N1 anD K. HWANG, 1981. Optimal Load Balancing Strate-
gies for a Multiple Processor System in Proceedings of the
International Conference on Parallel Processing, pp. 352-357.
L.M. NI anp K. HwaNg, 1985. Optimal Load Balancing in a
Multiple Processor System with Many Job Classes, IEEE Trans-
actions on Software Engineering SE-11:5, 491-496.

M.S. SHANKER, 1990. Resource Utilization Through Dynamic
Task Allocation, Ph.D. thesis, University of Minnesota, and
Working Paper 90-5, Department of Operations and Manage-
ment Science, Minneapolis, MN.

M.S. SHANKER, W.D. KELTON AND R. PADMAN, 1989. Adaptive
Distribution of Model Components via Congestion Measures
in Proceedings of the 1989 Winter Simulation Conference, pp.
640—-647.

W.H. SHAW, JR., AND T.S. MOORE, 1987. A Simulation Study of a
Parallel Processor with Unbalanced Loads in Proceedings of the
1987 Winter Stmulation Conference, pp. 759-767.

K.G. SHIN AND Y.-C. CHANG, 1989. Load Sharing in Distributed
Real-Time Systems with State-Change Broadcasts, IEEE Trans-
actons on Computers 38:8, 1124—-1142.

H.S. STONE, 1977. Multiprocessor Scheduling with the Aid of

Copyright © 2001 All Rights Reserved

31.

32

33.

Shanker, Kelton and Padman

Network Flow Algorithms, IEEE Transactions on Software Engi-
neering SE-3:1, 85-93.

H.S. Stong, 1978. Critical Load Factors in Two-Processor Dis-
tributed Systems, IEEE Transactions on Software Engineering
SE-4:3, 254-258.

AN. TanTawl AND D. TowsLEy, 1985. Optimal Static Load
Balancing in Distributed Computer Systems, Journal of the
ACM 32:2, 445-465.

Y.-T. WANG anND RJ.T. MoRRris, 1985. Load Sharing in Dis-

35.

36.

tributed Systems, IEEE Transactions on Computers C-34:3,
204-217.

. W. WHITT, 1982. Approximating a Point Process by a Renewal

Process, I. Two Basic Methods, Operations Research 30:1,
125-147.

W. WHitt, 1983. The Queueing Network Analyzer, The Bell
System Technical Journal 62:9, 2779-2815.

W. WHITT, 1983. Performance of the Queueing Network Ana-
lyzer, The Bell System Technical Journal 62:9, 2817-2843.

Copyright © 2001 All Rights Resérved

Copyright of ORSA Journal on Computing is the property of INFORMS: Institute for Operations
Research and its content may not be copied or emailed to multiple sites or posted to a listserv
without the copyright holder's express written permission. However, users may print, download, or
email articles for individual use.

