@ Pergamon

S0305-0483(96)00010-2

Omega, Int. J. Mgmt Sci. Vol. 24, No. 4, pp. 385-397, 1996
Copyright € 1996 Elsevier Science Ltd
Printed in Great Britain. All rights reserved
0305-0483/96 $15.00 + 0.00

Effect of Data Standardization on Neural
Network Training

M SHANKER'
MY HU
M S HUNG

Kent State University, Kent, OH 44242, USA
(Received 9 June 1995; accepted after revision 21 February 1996)

Data transformation is a popular option in training neural networks. This study evaluates the
effectiveness of two well-known transformation methods: linear transformation and statistical
standardization. These two are referred to as data standardization. A carefully designed experiment
is used in which data from two-group classification problems were trained by feedforward networks.
Different kinds of classification problems, from relatively simple to hard, were generated. Other
experimental factors include network architecture, sample size, and sample proportion of group 1
members. Three performance measurements for the effect of data standardization are employed. The
results suggest that networks trained on standardized data yield better results in general, but the
advantage diminishes as network and sample size become large. In other words, neural networks
exhibit a self-scaling capability. In addition, impact of data standardization on the performance of
training algorithm in terms of computation time and number of iterations is evaluated. The results
indicate that, overall, data standardization slows down training. Finally, these results are illustrated
with a data set obtained from the American Telephone and Telegraph Company. Copyright © 1996

Elsevier Science Ltd

Key words—neural networks, modelling

1. INTRODUCTION

WHEN TRAINING a neural network, one can
use either the original data or the transformed
data. Many researchers routinely use trans-
formed data—sometimes due to algorithm
requirement [1]; sometimes for improved learn-
ing; and other times for no reported
reasons [5]. Some researchers transform (nor-
malized) data to the interval [0, 1], whereas
others transform to [—1,1]. Simple data
transformation methods are provided as a
feature in most popular neural network
software; for example, NeuralWare [10] and
Brainmaker [2]. In addition to being needed for
algorithm requirements, data transformation
may be related to network computational and
classification performance. This paper reports
on the results of an empirical study on the

385

effect of data transformation on network
performance.

There are many transformations that can be
applied to a set of data. We evaluate two of the
most popular ones: linear transformation and
statistical standardization. The former uses the
range to transform a set of values to the interval
[0, 1], while the latter computes the deviation
from the mean and divides it by the standard
deviation. Since data transformation in general
includes many more methods and is a well
established area in statistics, we will use
data standardization to refer to the above two
simple schemes of data transformation. In
order to evaluate the effectiveness of these
standardization schemes, we design an extensive
experiment to generate a wide range of training
situations. Classification problems are chosen as
the subject of our experiments. Three problem

386

types, based on distributions of variables, are
defined. These problems range from simple to
complex. For each problem type, training
samples of various sizes and various pro-
portions are generated randomly. Each sample
is then trained on neural networks of various
architectures and with various bounds on the
arc weights.

Three different measures of performance are
used to compare the data standardization
methods. These measures are classification rate,
mean square error, and the percentage of local
minima, which are also called the Kuhn—Tucker
points. In addition, a smaller experiment
gathered computational statistics such as com-
putation time and number of iterations. Finally,
data standardization is evaluated on a dataset
obtained from American Telephone and
Telegraph Company.

The next section presents a brief review of the
computational aspects of neural network train-
ing. That is followed by the experimental
design, and a discussion of performance
measures and the reasons for including them.
The main results are in Section 5. Section 6
presents an empirical example to illustrate the
effects of data standardization in classification,
and Section 7 summarizes the major findings of
this project.

2. NEURAL NETWORKS TRAINING

Each neural network defined in this study
is a fully connected multi-layer feedforward
network. In other words, there are connections
between every node of one layer and every node
of the next layer. Every node beyond the input
layer has a bias. The activation function at each
node is logistic. The objective function for
training is based on the sum of square errors;
i.e., least squares. The following brief review is
not intended as a full discussion of neural
networks, and serves only for defining notation
and terminology, particularly those related to
the computational issues of neural network
training.

Let y? represent the activation value at node
i corresponding to pattern p.

o x? if (€N,
YEZYF(xr) if i€N,UN,

Shanker et al —Effect of Data Standardization

where x? is the input value of pattern p at node
i, and N,, Ny, and N, are respectively sets of
input, hidden, and output nodes. Fis the logistic
activation function, ie., Fl@)=({1+e)"
For a hidden or output node i, the input is
defined as

Xt =Y wl + wy
J

where w; is the weight of arc (j,7) and wy, is the
bias.

Let # denote the target for pattern p at output
node i. The objective function for training is
typically

Minimize %ZZ()/{’ -))

p i€Ng

Since network training is an unconstrained
minimization probiem, nonlinear optimization
method based on well founded theory [4, 6] can
be used. The successful and reliable nonlinear
programming methods use a search strategy.
Let w* denote the vector of weights in iteration
k. A descent direction ¢ is determined. Then a
step size a, is calculated. The new search point
is defined as

W = Wk ok gk

Algorithms differ in the choice of &* and «*. For
example, d* can be set to the negative gradient
(this method is called the steepest descent), or
the conjugate gradient, or the quasi-Newton
direction, or even the Newton direction (see [4]
and [6] for details). The step size can also be
fixed, or dynamically determined by minimizing
the objective function along d*. The typical back
propagation algorithm [12] uses the steepest
descent direction with fixed step size. An
algorithm stops if the gradient vanishes or an
improved new point cannot be found. In the
former, we have reached a local minimum, and
in the latter we may be in an area where
objective contours are too close together (i.e.,
the objective function is ill-conditioned). In
practice, when each component of the gradient
is smaller than a preset tolerance, the current
search point is considered as a local minimum.

The networks in this study were trained
with the GRG2-based system of Subramanian
and Hung[13]. GRG2 is a widely distributed
nonlinear programming software [7]. The

Omega, Vol. 24, No. 4

default search direction, which is the one used
in the study, is conjugate gradient. The step size
o, is determined by a series of probes of the
objective function taking into account the
bounds on variables. The tolerance for zero
gradient is 10~*. In other words, when each
gradient component is within this tolerance,
then we stop the algorithm and declare the
solution a Kuhn-Tucker point (i.e., a local
minimum). If the gbjective function does not
improve by more than 10~ * after 6 iterations,
we stop the algorithm with a non-Kuhn-Tucker
solution. See [13] for details.

The neural networks used in this study have
one hidden layer. The number of input nodes is
two since every pattern has only two variables
and there is one output node representing the
group membership of the pattern. In other
words, |N,| = 2 and|N,| = 1. The target value is
0 for members of group 1 and 1 for those of
group 2. The hidden nodes are one of the design
variables in this experiment.

3. DESIGN OF EXPERIMENT

A computer experiment was conducted to
evaluate the effectiveness of three methods of
data standardization. Transformation is per-
formed on each input variable independently.
In other words, for each training sample,
statistics for variable i, such as mean x,
minimum /, maximum u,, and variance s?, are
computed for each variable. Value p of variable
i, x7, is then scaled according to the following
methods:

1. No transformation at all.
2. Linear transformation—

2= () — L), — 1)

3. Statistical standardization—

2= (<~)f(sn/n— 1)

where z? is the transformed value of x?. The
sample variance is computed with a divisor
n—1.

Linear transformation scales each variable
into the interval [0, 1]. Standardization 3 is
widely used in statistics for controlling roundoff
errors and making the units of variables
comparable [9, p. 379].

387

The experimental subjects are 2-group 2-vari-
able classification problems. Three types of
problems are considered.

Pl. Variables have a bivariate normal distri-
bution with equal variance—covariance
matrices across the groups.

P2. Variables have a bivariate normal distri-
butions but with unequal variance—
covariance matrices.

P3. Variables have a bi-exponential distri-
bution.

Aside from differences in distribution and
variance—covariance matrix, the three types of
problems are made to be as much alike as
possible. For example, variables of the same
group have the same means across the three
cases and the same correlation. If g, and p, are
vectors of variable means in group 1 and group
2, respectively, and X, and Z, are the respective
variance—covariance matrices, then these par-
ameters are chosen as follows:

5 15
“l = 5 Ll /’LZ = 5 s
5 250 7.5 s = 225.0 22.5
'\ 7.5 250) TP\ 225 250

For P1, mean vectors are as specified, but the
variance—covariance matrix for group 2 is set to
X,. For P2 and P3, the mean vectors and the
variance—covariance matrices are as specified. In
both matrices, the off-diagonal elements are
chosen so that the correlation between variables
is 0.3. This coeflicient of correlation is arbitrary.
It is large enough to create irregular “overlaps”
among the generated patterns and it is small
enough that sample covariance matrices do not
become ill-conditioned.

The bi-exponential distribution belongs to the
bi-gamma distribution whose joint density
function cannot be specified {8, p. 506]. What
can be said is that each variable has an
exponential distribution and the correlation
between variables is known. Specifically, let x;
denote variable i in group j with mean y;, then
the marginal density function is

S(x) = pi e " for x >0

388

3
Pop. 1
o .
201 Pop. 2
M a
. 2B o o e
PERERCL R S
107 wi ™ -32‘9 w, BE % oo
R e ;-Dé;, Lo F o
3 - RS Te e
2 R ey T2
™ = T E ol =4
e o - -u:: o o
- - -- o
- -
-10{
‘20 0 0 j o 0 |

x1

Fig. 1. Problem type 1 bivariate normal, equal covariance

Since the mean of an exponential distribution
is equal to the standard deviation, it is
not possible to generate exponential distri-
butions with unequal means and equal vari-
ances. This explains the choice of the diagonal
values for matrices X, and X, For each
distribution, training samples of various sizes
are generated using algorithms shown in {8,
pp. 505-506].

Examples of these three types of problems are
shown in Figs 1-3. The stars represent points
from group 1 and the hollow squares represent
points from group 2. Each graph shows 100
randomly generated points from each group. In
P1, both groups are slanted because of the
covariance between variables. In Figs 2 and 3,
it can be seen that group 2 encloses group 1
because of the larger variance and covariance
terms of group 2.

The other factors in this experiment are
described in the following sections.

i3
Pop. 1
o -
20 Pop. 2
.
--:a‘i:_%m_) -
Lo e Do o
101 o ™ - %D Ye o o
W o FoeeEEe o %% °°
N o o o Ja uc-qu DCUDDD
"@"ﬁ*"?_mu S
Y e - e
= |
TR % ol
. -
104
% 2 ' d0 ' 0 | 1o 20 30 40

x1

Fig. 2. Problem type 2 bivariate normal, unequal covariance
matrix.

Shanker et al.—Effect of Data Standardization

=
-
E 3
ol “o Pop. 1
(=]
- = |Pop.2
151 -
s
™ o a a o
- -
o 10] . ° o °
O W o
L
3] - e (=] =] o
M “ o | ° o
-
5 'C\:D;” a e o o
o e ©° a ” “
BEs 377 ° . o
-]
s S g
o 1 20) 0 = 6

x1

Fig. 3. Problem type 3 bivariate exponential.

3.1. Network architecture

Network architecture determines the number
of weights to be estimated by the optimizer.
As a network has more arcs, it is expected
that computation will be more difficult.
Since we use fully connected networks with
only one hidden layer, the differences in
architecture are the differences in the number
of hidden nodes. We use three levels here:
0(HO0), 2(H2), and 5(H5). With 0 hidden
nodes, the network reduces to one without
a hidden layer. The other values are chosen
to provide a wide variety of problem sizes
for the optimizer. Since the biases are
defined for all hidden and output nodes, the
number of weights to be computed for is as
follows:

Number Number
of biases of weights

Number
Architecture of arcs

HO 2 1 3
H2 6 3 9
HS 15 6 21

3.2. Sample size

Three levels of training sample sizes are
selected—30 (S1), 50 (S2), and 100 (S3). Sample
size refers to the total number of patterns from
both group 1 and group 2. Since every iteration
in the nonlinear optimizer requires computation
of the gradient, which is accumulated from all
the patterns in the training set, sample size
directly affects the amount of work in the
iteration.

Omega, Vol. 24, No. 4

3.3 Sample ratio

The other factor is the ratio of group 1
members in the training sample. There are 3
levels: 0.5 (R1), 0.7 (R2), 0.9 (R3). The
combination of sample size and sample ratio
determines the number of patterns from either
group of our classification problem. For
example, with sample size 30 (S1) and ratio of
0.7 (R2), the number of patterns from group |
is 21, whereas the number of patterns from
group 2 is 9. The reason to include this factor
is that as proportion increases, we expect the
training to be increasingly difficult, by which we
mean an increase in both computational time
and number of iterations.

3.4. Bounds on arc weights

With our training system, it is very simple to
put bounds on the weight w; of arc (j,f). While
each weight in principle is without bound, it
tends to be small in practice. In previous
studies {11, 14], we used bounds of + 100 on
each arc weight (but not the biases). We found
that some of the solutions had some weights at
the bounds. So we decided to include this as an
experimental factor and added two other
bounds. The three levels are + 100 (Bl), + 500
(B2), and + 1000 (B3). Our assumption is that
as bounds increase, the likelihood of finding
Kuhn-Tucker points should increase too. The
reason is simply that with larger bounds, we
increase the solution space and therefore give
the algorithm more chances to find a local
minimum.

The next section presents the performance
measures used in our study.

4. PERFORMANCE MEASURES

The measures for comparing the effectiveness
of data standardization methods are as follows.

4.1. Classification rate

At the termination of training, a pattern is
correctly classified if the network output is
within 0.5 of a pattern’s target value. Classifi-
cation rate is simply the percentage of the
correct classifications in the training sample.
This criterion is an important summary statistic
of a classifier. A better classifier is associated
with a higher classification rate.

389

4.2. Mean square errors (MSEys)

Mean square errors (MSEs) is equal to sum
of square errors defined in equation (1) divided
by (n — w) where #n is the sample size and w is
the number of weights to be estimated. w is
determined by the network architecture and is
given in an earlier table. MSE is used so that the
objective function value in equation (1) can be
compared across training samples of different
sizes and different architectures. This criterion is
related to the quality of least squares solution.
In other words, a better solution is one with
smaller MSE.

4.3. Percentage of Kuhn—Tucker points

The minimization problem equation (1)
contains many local minima, flat areas, and
areas where contour lines are very close together
(called ill-conditioned points). Depending on
the starting solution, the choice of search
direction, and the tolerance for stopping, an
algorithm may either end up at a local minimum
or a flat area, or may fail to find a minimum
(due to ill-conditioning). Everything else being
equal, one would want a model to end up at a
local minimum more often. For this experiment,
every training sample is solved with 10 different
starting solutions. The percentage of final
solutions being Kuhn-Tucker points is re-
ported.

4.4. Training time

This measures the computational time taken
by the optimization algorithm for training the
neural network.

These performance measures depend not only
on the data but also on the algorithm used.
Specifically, computation time depends on the
choice of search direction and step size, and the
termination criteria. Classification rate and
MSE depend on the quality of the solution
found by the algorithm. We mention this point
to stress that the results reported below may be
applicable only to the GRG2 based algorithm
used in our experiments [13]. For researchers
using back-propagation or similar algorithms,
the effect of data standardization may be
different.

5. RESULTS

Within each problem type, 10 different
training samples from each combination of

390

sample size, sample ratio, and weight bounds
are generated. Thus, there are 270 different
training samples in this experiment. Each
training set is subject to all three standardiz-
ations; hence there are 810 different transformed
samples. Each is then trained on networks with
three different architectures. In addition, train-
ing is repeated with 10 different starting
solutions. Therefore, for each problem type, we
have a total of 24,300 observations.

The starting solutions are generated from a
uniform distribution [— 3, 3] for each arc
weight and node bias. Different starting
solutions are the consequence of 10 different
seeds for the random number generator. The
same 10 seeds are used for all the networks.
Therefore, networks of the same architecture
have the same 10 starting solutions.

5.1. Summary results

Since there is a voluminous amount of
output, we decided to report only the differences
between standardization methods. For the first
two measures of performance, classification rate
and MSE, we take the difference between two
standardizations and compute the mean differ-
ence across the 10 starting solutions. For
example, for problem P1, a sample of size 50
with sample ratio of 0.5, and a network with 2
hidden nodes, we trained the sample with 10
starting solutions. At the end of each training,
we have two performance measures based on
the network outputs. We then compute the
difference for each measure between every pair
of standardizations. Since there are three pairs,
there are three differences for each performance
measure. For each pair of standardizations, we
compute the mean difference across the 10
starting solutions. These means are then used
for statistical analysis. For each problem type,

Shanker et al —Effect of Data Standardization

there are 810 mean differences for each
performance measure.

For the third measure, the percentage of
solutions being Kuhn—Tucker points among 10
starting solutions is found for each training
sample. The difference between every pair of
standardization methods is then computed and
used for further analyses.

Table 1 shows the mean differences between
standardization methods. Standardization
method 1 denotes no standardization, 2 linear
transformation, and 3 statistical standardiz-
ation. The other notations are as follows:

Ratexy = Classification rate (%) of standard-
ization method x — that of method y
MSExy = MSE of standardization method
x — that of method y
KTxy = Percentage of Kuhn-Tucker sol-
utions of method x — that of
method y

The classification rates show that standardiz-
ation method 1 is inferior to method 2 by
2.85% for problem P1, by 1.86% for P2,
and by 1% for P3. Standardization method
1 is also inferior to method 3 by 2.93% for
Pl, 2.07% for P2, and 0.76% for P3. Al
these differences are statistically significant at
o of 5%. Therefore, one can conclude that
based on overall classification rates, data
standardization is beneficial to classification
problems.

Standardization method 2 is inferior to
method 3 for problems P1 and P2, but superior
for P3. Again, these differences are statistically
significant.

Based on MSE, standardization method 1 is
inferior to method 2 and method 3 in all
problem types. These differences are statistically

Table 1. Difference in performance measures of standardization methods

M Problem P1 Problem P2 Problem P3
easure

difference Mean* P value® Mean* P value® Mean* P value®
Ratel2 —2.852 0.0001 —1.865 0.0001 —0.999 0.0001
Ratel3 —~2932 0.0001 —2.067 0.0001 —0.755 0.0001
Rate23 —0.080 0.0021 —0.202 0.0001 0.244 0.0001
MSE12 0.0164 0.0001 0.007 0.0001 0.005 0.0001
MSEI3 0.0166 0.0001 0.009 0.0001 0.004 0.0001
MSE23 0.0002 03115 0.002 0.0001 —0.002 0.000!
KTIi2 —0.223 0.0001 —0.307 0.0001 —0.219 0.0001
KTI13 —-0.234 0.0001 —0.308 0.0001 —0.223 0.0001
KT23 —0.011 0.0224 —0.002 0.7426 -0.003 0.4265

*Sample size §10.

*Based on testing mean difference = 0.

Omega, Vol. 24, No. 4 391

Table 2. Mean differences in performance measures by network architecture

Problem P1 Problem P2 Problem P3

Measure HO H2 HS HO H2 H5 HO H2 HS
Ratel?2 —6.584* —1.341 —0.631 —4.236 ~2.318 0.960 —1.998 —0.958 —0.042°
Ratel3 —6.616 —1.495 —0.685 —4.268 ~2.537 0.605 —-2.001 —0.783 0.518
Rate23 —0.032° —0.154 —0.054° —0.032° ~0.219 —0.356 —0.003" 0.175 0.560
MSE12 0.038 0.006 0.005 0.026 0.005 —0.009 0.015 0.003 ~0.002"
MSEI3 0.038 0.006 0.006 0.026 0.006 —-0.006 0.015 0.002 —0.006
MSE23 —0.0001 0.0002° 0.0005° 0.0001° 0.001 0.003 0.0000° —0.001 —0.004
KTI2 —-0.421 —0.150 —0.099 —0.499 -0.318 —0.103 —0.413 —-0.151 —0.093
KTI13 —0422 —0.187 —0.095 —0.505 —0.291 —0.129 —0411 —0.161 —0.095
KT23 —0.001° —0.037 0.004° —0.006° 0.026 —0.026 0.001° —0.009" —0.002°

“Mean difference from a sample of size 270.
"Mean difference not significant at 5% level.

significant at « = 5%. Standardization method
2 is inferior to method 3 for problems P1 and
P2, but superior for P3. But the difference for P1
is not significant.

The above two measures offer consistent
comparisons between standardization methods.
Namely, data standardization is beneficial.
The difference between linear transformation
or statistical standardization depends on the
problem type. For Pl and P2 where each
variable is normally distributed, statistical
standardization is better. For P3, linear
transformation is better.

On the percentage of finding Kuhn-Tucker
points, standardization method 1 is worse than
method 2 by 0.22% for P1, by 0.31% for P2,
and by 0.22% for P3. It is inferior to method 3
by 0.23% for P1, by 0.31% for P2, and by
0.22% for P3.

These illustrate that data standardization
does help the optimization algorithm in finding
local minima. However, for both classification
rates and MSE, the advantage of data
standardization decreases as we move from
problem type Pl to P2 and then to P3. It
indicates that for difficult problems, data
standardization loses its beneficial -effects.
Standardization method 3 is better than method
2 for three problem types, but the difference is
only significant for P1.

Note that Rate 23 = Ratel3 — Ratel2, and
similar equations hold for MSE23 and KT23.
The reported numbers may differ from these
equations because of rounding.

5.2. Effect of network architecture

The summary data in Table 1 are further
broken up by network architecture and the
results are reported in Table 2. The number of
observations for each performance measure is

270. Additional clear patterns emerge from this
table. One, the advantage of data standardiz-
ation decreases, when architecture is held
constant, as we move from problem P1 to P2,
and then to P3; exactly as we have already
observed in Table 1. For example, for
architecture HO, Ratel2 goes from — 6.584 to
— 4236 to — 1.998. Recall that a negative
value means standardization method 2 (linear
transform) is better than no standardization.
This same pattern holds for MSE as well. This
pattern says that as classification problem
becomes more difficult, the advantage of data
standardization diminishes. The only exception
is the percentage for finding Kuhn-Tucker
solutions where the advantage peaks at problem
P2. This phenomenon was also seen in Table 1.

The second pattern is that as the network
becomes larger, the advantage of data standard-
ization decreases. And this holds for all three
measures. Take problem Pl. As the number of
hidden nodes goes from 0 to 2 and then to 5,
Ratel2 goes from —6.584 to —1.341 to
—0.631. For P2, it is even more dramatic.
Ratel2 goes from — 4.236to — 2.318 to 0.960;
the last shows that no standardization is better.
What this implies is that the neural networks
have the capability of self scaling. And the self
scaling capability increases with increasing
network size.

Another interesting phenomenon is that as
network architecture changes, the difference
between standardization method 2 and method
3 becomes important. For example, method 3 is
increasingly better than method 2 according to
Rate23 for problem P2 as architecture increases.
The reverse holds for P3; method 2 is
increasingly better than method 3. In fact, for
P3 Rate23 is larger than either Ratel2 or
Ratel3 under HS.

392

Shanker et al —Effect of Data Standardization

Table 3. Mean differences in performance measures by training sample size

Problem P1 Problem P2 Problem P3
Measure S1 S2 S3 S1 S2 S3 St S2 S3
Ratel2 —-4.072¢ —2.588 -1.897 —3.167 —1.487 —0.940 —1.936 —0.867 —0.195°
Ratel3 —4.169 —-2.721 —1.906 —3.459 —1.679 —1.063 —1.768 —0.501 0.004°
Rate23 —0.098 —0.133 —0.009° —0.293 -0.191 -0.123 0.168 0.366 0.199
MSEI12 0.022 0.015 0.011 0.013 0.005 0.004 0.009 0.006 0.002
MSE13 0.023 0.015 0.011 0.016 0.006 0.004 0.006 0.004 0.0009°
MSE23 0.0006° 0.0001° ~-0.0002° 0.003 0.001 0.0007 —0.002 —0.002 —0.001
KTI2 —0313 -0.210 —0.148 —0.316 —0.328 ~0.277 -0.287 -0.219 —0.151
KT13 —0.324 —0.223 —0.156 -0.313 —-0.334 —0.279 —0.282 —0.224 -0.161
KT23 —0.011° —0.014° 0.008° 0.003* —0.006° —0.002° 0.004° —0.005" —~0.010°

*Mean difference from a sample of size 270.
"Mean difference not significant at 5% level.

5.3. Effect of training sample size

The summary data in Table 1 are broken up
by sample size and the results are shown in
Table 3. The patterns observed in Table 2 are
also very visible here. For example, the
advantage of data standardization decreases as
we move from problem P1 to P2 and to P3,
when sample size is held constant. Take Ratel2.
With sample size 30 (S1), the difference goes
from — 4.072 to — 3.167 and then to — 1.936
as we move from P1 to P3. The only exception,
also seen in Table 2, is the percentage of finding
Kuhn-Tucker solutions. Measures KT12 and
KT13 rise from P1 to P2 with most sample sizes,
and drop from P2 to P3. Entries in P3 under S2
and S3 are higher than the corresponding ones
in P1.

Secondly, as sample size increases, the
advantage of data standardization decreases.
This holds for measures Rate and MSE, and
most of KT. For example, by measure Ratel2
or Ratel3, data standardization shows no
significant effect for problem P3 when sample
size goes up to S3. It shows that the self scaling
capability of neural networks is helped by large
samples.

The relative advantage of standardization
method 2 and method 3 is mixed. Either Rate

or MSE shows that method 3 seems to be better
for problem P1 and P2, but worse for P3. The
differences for P1, however, are not significant.

5.4. Effect of sample proportion

The summary data of Table 1 are broken up
by factor sample proportion. The results in
Table 4 do not exhibit the same patterns we saw
carlier. The advantage of data standardization
1s still monotonic as we go from P1 to P3. This
time, the trend is downward, however. Take
ratio R1. Measure Ratel2 goes from — 2.868 to
— 1.214 and then to — 0.232, as we go from Pl
to P2 and then P3. But within a problem type,
the pattern is not clear. While the advantage of
data standardization generally increases with
sample proportion, measures Rate and MSE
have dips in P1, but peaks in P3, at ratio R2. It
is difficult to understand why sample proportion
0.7 (R2) causes the pattern to change. Measure
KT, however, is consistent across both problem
types and sample proportions.

The overall conclusion one can draw from
these discussions is that neural networks seem
to be able to adjust themselves to data
when sample and architecture are large enough;
and thus rendering data standardization less
useful.

Table 4. Mean differences in performance measures by sample proportion

Problem P1 Problem P2 Problem P3

Measure R1 R2 R3 R1 R2 R3 R1 R2 R3
Ratel2 —2.868" —2.463 —3.225 —1.214 —2.034 —2.345 —-0.232> —1.546 —1.221
Ratel3 —2.947 —2.568 —3.280 ~1.623 —2.131 —2.445 0.127° —1.268 —1.124
Rate23 -0.079* —0.105 —0.055° —0.409 —0.097 —0.100 0.359 0.278 0.096
MSEI12 0.016 0.015 0.018 0.004° 0.005 0.013 0.002 0.007 0.007
MSE13 0.016 0.015 0.019 0.007 0.006 0.013 0.0007° 0.005 0.005
MSE23 —0.0003" 0.0006 0.0002° 0.003 0.0008 0.0007 —0.002 —0.002 —0.001
KTi2 —0.172 -0.211 —0.286 -0.225 —-0.269 —0.427 —0.086 —0.176 —0.396
KTI3 —0.187 —0.222 -0.295 —0.216 -0.265 —0.444 —-0.092 -0.179 —0.397
KT23 ~0.015° —-0.010> —0.009" -0.009° 0.004* —0.017° —0.007° —0.003* —0.0004°

*Mean difference from a sample of size 270.
"Mean difference not significant at 5% level.

Omega, Vol. 24, No. 4

393

Table 5. Mean differences in performance measures by bounds on arc weights

Problem Pl Problem P2 Problem P3

Measure Bl B2 B3 Bl B2 B3 Bl B2 B3

Ratel2 -2.797* —2.891 —~2.868 —1.949 —1.829 ~1.816 —1.197 -0.899 ~0.902
Ratel3 ~2.907 —2.948 —~2.940 —2.153 —2.043 ~2.005 —0.882 —0.705 ~0.679
Rate23 ~0.110 —0.057° ~0.072° —-0.204 -0.214 ~0.189 0.316 0.194 0.223
MSE12 0.016 0.016 0.016 0.008 0.007 0.007 0.007 0.005 0.005
MSEI13 0.016 0.017 0.017 0.00% 0.009 0.008 0.005 0.003 0.003
MSE23 0.0003° 0.0001° 0.0001° 0.001 0.002 0.002 —-0.002 —0.002 —0.002
KTi2 —0.254 -0.214 —0.203 —-0.332 —0.299 -0.289 -0.238 —0.214 —0.206
KT13 —0.257 —0.228 ~0.218 —~0.336 —-0.297 —0.293 —~0.250 -0.209 —0.209
KT23 —0.04° —0.014° ~0.016° —~0.004° 0.002° —0.004° ~0.012° 0.005° —0.003°

“Mean difference from a sample of size 270.
*Mean difference not significant at 5% level.

5.5. Effect of bounds on arc weights

Table 5 shows the effect of bounds on arc
weights. By measure Rate, it seems to indicate
that as bounds increase, the advantage of data
standardization decreases. But measure MSE
shows little difference among various bounds.
Measure KT exhibits an expected pattern. We
had assumed that as bounds increase, the
chances for finding Kuhn-Tucker solutions
would also increase. Therefore, KT should tend
to zero as bounds increase. The results are
consistent with this assumption.

We examined several samples where local
minima were not found in all bounds and
several samples where local minima were found
in bounds + 100 (B1) but not in larger bounds.
For the former cases, the final solution is
typically within bounds BI. Since for the same
network architecture, the starting points are all
the same for the same data set, the final
solutions are the same. For data sets where the
solution is at bounds Bl for some arc weights,
enlarging the bounds often resulted in non-
Kuhn-Tucker points again. It seems to indicate
that there is a large flat area extending outward
from the origin of the solution space. In such
cases, larger bounds seemed to allow line search
(for step size a) to skip over local minima as it
takes into account the bounds on arc weights. A
different algorithm may thus exhibit a different
pattern.

5.6. Effect on computation

A separate run was made in order to gather
statistics on the performance of our training
algorithm as a consequence of data standardiz-
ation. For this run, only a subset of the training
samples was used. There are still 3 methods of
data standardization, 3 problem types, 3
network architectures, 3 sample sizes, and 3
sample proportions. However, due to the

previous result indicating that arc bounds do
not affect the classification rates or MSE, the
level of bounds on arc weights is reduced to one:
+ 500 (B2). The number of data sets for each
combination of factor levels is reduced from 10
to 2, and for each data set, the number of
starting solutions is reduced from 10 to 5. For
each of these 2430 training sessions, the
computation time (milliseconds on an IBM RS
6000 model 530) and the number of iterations
were gathered. The computation time includes a
little time for output of summary statistics but
excludes all other input/output operations. The
number of iterations is equal to the number of
times gradient is computed.

Table 6 shows that the average time and
iterations over all 2430 training sessions, broken
up by standardization methods. The average
time for untransformed data (method 1) was
82.72 ms, and it was 96.98 ms for method 2 and
106.70 ms for method 3. The average number
of iterations per training session was 38.15
for method 1, 44.53 for method 2, and 48.65
for method 3. This was the second surprise
finding from our experiments. We had expected
data standardization to help in both compu-
tation time and the number of iterations. The
results clearly indicate that just the opposite is
true.

The differences in computation times and in
iterations between standardization methods
were used to create Tables 7-10. For each
training sample, the average difference among
the 5 starting solutions is computed and then

Table 6. Summary results on computation time and number of
iterations

Standardization method Mean time Mean iterations
1 82.72¢ 38.15
2 96.98 44.53
3 106.70 48.65

‘Based on sample size 162.

394

Table 7. Mean differences in algorithmic performance by problem
type

Measure P1 P2 P3 Total

T™I12 —10.50** —10.43° ~21.84 —14.26°

T™13 —20.87 —17.38 —33.69 —23.98

IT12 —4.98° —4.40° —-9.74 —6.37

IT13 —8.25 - 17.38% —15.86 ~10.50

*Mean difference from a sample of size 54.
*Mean difference not significant at 5% level.
‘Mean difference from a sample of size 162.

summarized by problem type and by the other
factors. The notation is as follows:

TMxy = Average time of standardization
method x — that of method y
ITxy = Average iterations of method

x — that of method y

From Table 7, we see that method 1 (no
standardization) gave rise to faster computation
time and fewer iterations than either standardiz-
ation in all three problem types. In addition,
TM13 — TM 12 (not shown in Table 7) indicates
that method 2 is better than method 3 by almost
the same amounts. However, the progression
from P1 to P3 as we have seen previously does
not hold here. The differences are greatest in P3,
then in Pl, and finally in P2. Entries in the
overall column are the averages of the three
problem types and are equal to the differences
in mean values from Table 6.

The results in Table 7 are broken up by
network architecture and these are shown in
Table 8. As architecture increases, which makes
the optimization problem larger and more
difficult to compute, the penalties of data
standardization increase too. By both measures
TM and IT, the differences become large, in
absolute values, as we move from HO to H5 in
all problem types. However, statistical signifi-
cance is detected mostly in P3 and mostly
between methods | and 3. It is interesting to
note that there are no significant differences for
HO in all problem types.

Shanker et al —Effect of Data Standardization

Table 9 show the differences by sample size.
The patterns revealed in this table are not as
clear as those in Table 8. As sample size
increases, computation becomes more difficult
because there is more work per iteration to
evaluate both the objective function and the
gradient. However, the significant differences
only occur in sample size 50 (S2). In this table,
measure IT does not seem to be a good
predictor for measure TM. Consider problem
P2 and sample size S3, where IT indicates
standardization methods 2 and 3 are better than
1 but TM shows just the opposite, although
the differences in TM are not statistically
significant.

Similarly a confusing picture is seen in
Table 10. There is no consistent progression
in either TM or IT when sample ratio moves
from 0.5 (R1) to 0.9 (R3). Most of the
significant differences occur in R2. There are
no significant differences in either TM or IT in
R3.

The next section presents an empirical
example to illustrate the effect of data
standardization on an non-simulated dataset.

6. AN ILLUSTRATIVE EXAMPLE

The American Telephone and Telegraph
Company conducted a survey to investigate the
relationship between the perceived level of long
distance telephone usage and some socioeco-
nomic characteristics. Approximately 1,400
consumers responded to a questionnaire. Per-
ceived level of usage is measured as either
heavy/medium or light/non. Among the multi-
tude of socioeconomic variables, two were
selected for the purposes of this study—house-
hold income, and number of friends and
relatives (see [3] for further details on this data
set). Both are understandably related to the
perceived level of usage and are employed to
classify consumers into any of the two usage
groups.

Table 8. Mean differences in algorithmic performance by network architecture

Problem P1 Problem P2 Problem P3
Measure HoO H2 HS HO H2 HS5 HO H2 HS
T™MI12 —0.33+> —4.89* —26.29* 0.33° —3.67 —27.96 —0.08° ~13.67 -~51.79
TMI13 —1.98° —11.19° —49.46 0.56° —6.52° —46.17 —0.89° —24.39 —75.78
ITI12 —1.31° —5.18° —8.44° 0.10° —-3.22° —10.09* -0.13° —8.30° —20.79
IT13 —2.03 —7.48° —15.24° 0.22° —2.61° -19.76* —097° —17.46 -29.14

*Mean difference from a sample of size 18.
*Mean difference not significant at 5% level.

Omega, Vol. 24, No. 4

395

Table 9. Mean differences in algorithmic performance by sample size

Problem P} Problem P2 Problem P3
Measure S1 S2 S3 S1 S2 S3 S1 S2 S3
T™MI12 —0.39** —2247 —8.66° —12.16° —9.03° —10.10° -3.67° —36.06 —25.81°
T™I13 -2.38° -20.17 - 40.07° —11.03° —27.28° —13.82° —0.89" —57.58 —42.59
IT12 —0.54° —1391 —0.48" —-9.56° —4.47° 0.81° —1.03° —21.83 —6.36°
ITi3 —2.58° -10.73 —~11.44° —7.81® —15.26" 0.92° —0.79* 3517 —11.61

“Mean difference from a sample of size 18.
"Mean difference not significant at 5% level.

Three random samples of size 30, 50, and 100
were selected from this dataset. For this
illustration, we considered only a single
proportion, equal to 0.64, of the heavy/medium
usage group. Each sample was trained on three
different architectures, with 0, 2 and 5 hidden
nodes. However, due to previous results
(Section 5 indicating that arc bounds do not
affect classification rates, here, we consider only
a single level for arc bounds: + 500. Ten
different starting seeds were used for each
network and were the same for the corresponding
network across the three samples. As in the case
of our simulated experiment, the three standard-
ization methods were evaluated on classification
rates, MSE, percentage of Kuhn-Tucker points,
and computational time. Since only one sample
is used for each of the three levels of sample size,
statistical significance is no longer a meaningful
measure of the differences across the various
experimental conditions. Thus, the results
presented below are only descriptive in nature.

6.1. Results

Results reported here largely support that of
our simulated experiment. As shown in
Table 11, standardization method 3 (statistical
standardization) has the highest classification
rate and the lowest average MSE of all three
methods. Method 3 is better than method 2 by
3.281% and is better than method 1 by 16.699%
in classification rate. Overall, it is more likely for
method 3 to have Kuhn-Tucker condition
satisfied as compared to the other two methods,
and similar to previous results, method 3 is

more computationally time consuming com-
pared to the other methods.

For this data set, with zero hidden nodes
(HO), method 2 and 3 yield similar results. This
is reflected in the classification rate and MSE
(see Table 11). In addition, all 3 methods have
the same percentage of Kuhn-Tucker solution
satisfied. Under HO, method 2 and 3 utilize
about the same amount of computer time,
which is substantially more than that of method
1. As the size of the architecture increases, the
advantage of method 2 over method 1 in
classification rate diminishes. The difference
decreases from 33.110% to 2.367% when HS
is used. Yet a curvilinear relationship is
indicated in the difference in classification rates
between method 1 and 3 as the number of
hidden nodes increases. A similar pattern is
captured in the MSE differences. As network
architecture increases, methods 2 and 3 require
more computing time than method 1, with
method 3 requiring the most computing time of
all methods. As sample size increases, the
advantage of data standardization decreases
(Table 11). This holds for Rate, MSE and most
of KT. Again, this shows the self scaling
property of neural networks as sample size goes
up. As sample size increases, as expected,
methods 2 and 3 require proportionally more
computing time than method 1.

7. CONCLUSIONS

We have reported an experiment designed to
evaluate the effectiveness of data standardiz-

Table 10. Mean differences in algorithmic performance by sample proportion

Problem Pl Problem P2 Problem P3
Measure R1 R2 R3 R1 R2 R3 R1 R2 R3
T™M12 2.7+ —2203" 1247 —24.46° —6.28° —0.56° -39.49 —24.46 ~1.59*
T™MI13 —23.67° —18.94 —20.01° -4237 -19.29° 9.52° —36.24 —49.63 —15.18°
IT12 3.09° —-10.19 —7.83° —-9.92° —4.36° 1.07° -17.80 —9.80 ~1.62°
IT13 ~7.42" -10.02 —-7.31° —20.29° ~9.61° 7.76° -1590 ~21.48 —10.19®

“Mean difference from a sample of size 18.
*Mean difference not significant at 5% level.

39

Shanker et al —Effect of Data Standardization

Table 11. Mean differences in performance measures of standardization methods for AT&T data
By Network Architecture By Sample Size

Measure Overall HO H2 HS S1 S2 S3
Ratel2 —13.418 —~33.110 —4,777 —2.367 —14.554 —13.533 —12.166
Ratel3 —16.699 —-33.110 —2.289 —14.699 —18.331 —15.933 —15.833
Rate23 —3.281 0 2.488 —12.332 -3.9717 —2.400 —3.666
MSEI2 0.171 0.444 0.027 0.042 0.198 0.167 0.148
MSEI13 0.284 0.444 0.018 0.390 0.384 0.266 0.203
MSE23 0.113 0 —0.009 0.348 0.186 0.098 0.054
KTt2 0.077 0 0.233 0 0.200 0.100 —0.066
KTI3 0.211 0 0.233 0.400 0.233 0.300 0.100
KT23 0.133 0 0 0.400 0.033 0.200 0.166
T™I12 —14.144 —8.800 —19.633 —14.000 —-16.733 —19.233 —6.466
T™I13 —47.277 —8.933 —38.700 —94.200 —30.833 —47.100 —63.900
T™23 —33.133 —0.133 —19.066 —80.200 —14.100 —27.866 —57.433
ation on neural network training. Three are affected by the algorithmic decisions in

transformation methods were compared, in-
cluding the base case, which is no transform-
ation. The subject is two-group classification
problems, ranging from simple to complex. The
major results are as follows.

e Overall, data standardization is ben-
eficial, as measured by classification
rate, MSE, and percentage of finding
Kuhn-Tucker solutions.

e The advantage of data standardization
diminishes as network becomes large.

e The advantage of data standardization
decreases as sample size increases.

e The advantage of data standardization is
evident in all sample proportions but
there is no simple pattern observable.

e The advantage of data standardization is
not affected by bounds on arc weights.

e Data standardization gives rise to
more computation time and number
of iterations required by the training
algorithm.

e The disadvantage of data standardiz-
ation in terms of computation time and
number of iterations increases with
network size but exhibits no consistent
pattern otherwise.

o Neural networks in this study exhibit self
scaling capability.

Again, we would like to mention that some of
these results may not be applicable when other
training algorithms are used. The algorithm we
use has been proven to be very robust (see [15]
for a survey of comparative studies), in that it
has solved many difficult nonlinear programs.
As mentioned earlier, the computational issues

determining search direction and step size. The
effect of data standardization on computation
time and number of iterations may thus be
different for other algorithms. Performance
measures such as classification rate and MSE
are dependent on the quality of solution. Given
that neural network training problem is known
to have many local minima, these measures are
also affected by algorithm decisions. However,
we believe that results pertaining to neural
networks will stand when other algorithms are
used. Results like the self-scalability and the
combined effects of sample size and network
architecture should be generally true.

REFERENCES

1. Atlas L, Cole R, Connor J, El-Sharkawi M, Marks R,
Muthusamy Y and Barnard E (1990) Performance
Comparisons Between Backpropagation Networks and
Classification Trees on Three Real-world Applications.
Adbvances in Neural Information Processing Systems, Vol
2, (Edited by Touretzky D and Kaufmann Organ).

2. Brainmaker (1990) California Scientific Software, Grass
Valley, CA.

3. Bruning ER and Hu MY (1989) The role of
demographic factors in the analysis of survey versus
diary purchase reporting accuracy. Survey Method-
ology, 15, 59-70.

4. Fletcher R (1987) Practical Methods of Optimization,
2nd edition. Wiley and Sons, New York.

5. Gallinari P, Thiria S, Badran F and Fogelman-Soule F
(1991) On the relations between discriminant analysis
and multilayer perceptrons. Neural Networks, 4,
349-360.

6. Gill PE, Murray W and Wright M (1981) Practical
Optimization. Academic Press, Boston.

7. Lasdon LS and Waren AD (1986) GRG2 User’s Guide.
School of Business Administration, University of Texas
at Austin, TX.

8. Law AV and Kelton WD (1991) Simulation Modeling
and Analysis, 2nd edition. McGraw-Hill, New York.

9. Neter J, Wasserman W and Kutner M (1992) Applied
Linear Statistical Models, 3rd edition. Irwin.

10. NeuralWare (1993) NeuralWare, Inc, Pittsburgh, PA.

11.

12.

Omega, Vol. 24, No. 4

Patuwo E, Hu MY and Hung MS (1993) Two-group
classification using neural networks. Decision Sciences,
24, 825-845.

Rumelhart DE, Hinton GE and Williams RJ (1986)
Learning internal representations by error propagation.
In Parallel Distributed Processing. Explorations in the
Microstructure of Cognition (Edited by Rumelhart DE
and Williams JL). MIT Press, Cambridge, MA.

. Subramanian V and Hung MS (1993) A GRG2-

based system for training neural networks: design
and computational experience. ORSA Journal on
Computing, S, 386-394.

14.

ADDRESS FOR CORRESPONDENCE: Professor

397

Subramanian V, Hung MS and Hu MY (1993) An
experimental evaluation of neural networks for classifi-
cation. Computers and Operations Research, 20,
769~782.

. Waren A, Hung MS and Lasdon L (1987) The status

of nonlinear programming software—an update.
Operations Research, 35, 489-503.

Murali S
Shanker, Department of Administrative Sciences,
College of Business, Kent State University, Kent, OH
44242-0001, USA.

